Suppr超能文献

通过经验规划对织物制造中的染色工艺参数优化,比较响应面法与田口方法。

Comparison between response surface methodology and Taguchi method for dyeing process parameters optimization in fabric manufacturing by empirical planning.

作者信息

Nikhila Sri D, Kottapalli Rajyalakshmi, Pavani A, Ganteda Charankumar, Gouthami E, Abd-Elmonem Assmaa, Haroun Samah Abdelati, Hussain Syed M, Bayram Mustafa, Almaliki Abdulrazak H

机构信息

Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 522302, Andhra Pradesh, India.

Department of Engineering English, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 522302, Andhra Pradesh, India.

出版信息

Sci Rep. 2025 Mar 25;15(1):10209. doi: 10.1038/s41598-025-94919-w.

Abstract

This paper presents a comparative analysis of three experimental designs-Taguchi, Box-Behnken Design (BBD), and Central Composite Design (CCD)-for optimizing process parameters in a system with four factors at three levels. The study aims to identify the most effective experimental design by evaluating the relationship between variables and their contributions using Analysis of Variance (ANOVA). Quantitative results show that the Taguchi method, requiring fewer experimental runs, provides a more cost-effective solution, while BBD and CCD deliver more accurate optimization results with higher precision. Specifically, the Taguchi method achieves an optimization accuracy of 92%, BBD reaches 96%, and CCD yields 98% accuracy. The optimum set of parameters for each method is presented, and the adequacy of each model, as well as potential lack of fit, is assessed using R programming. The findings highlight the trade-offs between efficiency, accuracy, and experimental cost, offering practical guidance for selecting an appropriate experimental design based on specific optimization needs.

摘要

本文对三种实验设计——田口方法、Box-Behnken设计(BBD)和中心复合设计(CCD)进行了比较分析,以优化一个具有三个水平的四因素系统中的工艺参数。该研究旨在通过使用方差分析(ANOVA)评估变量之间的关系及其贡献,来确定最有效的实验设计。定量结果表明,田口方法所需的实验次数较少,提供了更具成本效益的解决方案,而BBD和CCD则以更高的精度提供了更准确的优化结果。具体而言,田口方法的优化精度达到92%,BBD达到96%,CCD的精度为98%。给出了每种方法的最佳参数集,并使用R编程评估了每个模型的充分性以及潜在的失拟情况。研究结果突出了效率、准确性和实验成本之间的权衡,为根据特定的优化需求选择合适的实验设计提供了实际指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15ad/11937516/8da858bdca2d/41598_2025_94919_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验