Suppr超能文献

生物膜动力学与抗生素耐药性:对生物膜阶段、zeta 电位动力学及抗生素敏感性的见解

biofilm dynamics and antibiotic resistance: insights into biofilm stages, zeta potential dynamics, and antibiotic susceptibility.

作者信息

Lavoie T, Daffinee K E, Vicent M L, LaPlante K L

机构信息

College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA.

Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA.

出版信息

Microbiol Spectr. 2025 Mar 26;13(5):e0291524. doi: 10.1128/spectrum.02915-24.

Abstract

spp. infections often involve biofilms, but standard antibiotic minimum inhibitory concentration (MIC) testing used to determine treatment evaluates planktonic bacterial growth only and does not account for biofilm presence, strength, or growth stage. To aid in determining a cost-effective method to solve this issue, we built upon methods initially published by Stepanovic et al. used to determine weak and strong biofilm formations. First, we determined 115 unique isolate biofilms at 2, 4, 6, 8, 16, and 24 h to classify the hourly stages of biofilm development based on statistically significant final growth results ( < 0.001): stages one (0-6 h), two (6-16 h), three (16-24 h), and four (24 h). Next, to further evaluate biofilm strength, electrostatic differences were measured through zeta (ζ)-potential for strong and weak biofilm producers at early and late stage-formed biofilms. The early stages of weak biofilm formers had a greater negative electrostatic charge when compared to strong biofilm formers. Meanwhile, strong biofilm formers began early stages with less negative charges before increasing the negative electrostatic charge by stage-four biofilm. At all time points, weak biofilm-forming isolate mean ζ-potentials were significantly more negative than strong biofilm formers ( = ≤0.04). Finally, to elucidate minimum eradication concentrations for biofilms, we treated stage-four biofilms with progressively higher concentrations of either daptomycin, vancomycin, or levofloxacin. Daptomycin was the only antibiotic to achieve ≥75% reduction in biofilm viability, seen at 32-256 μg/mL (64-512× MIC), and significantly reduced residual biofilm across all strong and weak biofilms. Biofilm findings showed an unexpected initial biofilm decrease in response to lower concentrations of antibiotics, followed by an increase in biofilm biomass at higher antibiotic concentrations. While higher antibiotic concentrations can be used to overcome bacterial resistance and eliminate infections, our results suggest that antimicrobial resistance is observed, regardless of bacterial biofilm strength, and that there may be an optimal treatment concentration window for achieving maximum kill. Our data add to the increasing evidence of biofilms' role in recurrent infections and the importance of antibiotic concentration.IMPORTANCEThis work is significant, as it addresses a critical gap in standard antibiotic testing by focusing on the unique characteristics of biofilm-forming infections, which are major contributors to recurrent and chronic infections. Unlike traditional MIC testing that evaluates planktonic bacteria, this study emphasizes the importance of biofilm presence, growth stages, and electrostatic properties in determining treatment strategies. By classifying biofilm development into distinct stages in an easily reproducible assay and measuring the biofilm zeta-potential for key differences and overall biofilm response to multiple standard antibiotic concentrations, this research provides valuable insights for the future of biofilm work. Furthermore, it highlights the efficacy of daptomycin in eradicating biofilm while identifying possibilities of optimal antibiotic concentration windows, a critical consideration for mitigating resistance and achieving effective infection control. These findings underscore the necessity of tailoring treatment to biofilm-specific dynamics, offering a path toward more effective therapeutic approaches for biofilm-associated infections.

摘要

某类感染通常涉及生物膜,但用于确定治疗方案的标准抗生素最低抑菌浓度(MIC)测试仅评估浮游细菌的生长,并未考虑生物膜的存在、强度或生长阶段。为了帮助确定一种经济有效的方法来解决这个问题,我们在斯特帕诺维奇等人最初发表的用于确定弱生物膜和强生物膜形成的方法基础上进行了研究。首先,我们在2、4、6、8、16和24小时测定了115种独特的分离株生物膜,根据具有统计学意义的最终生长结果(<0.001)对生物膜发育的每小时阶段进行分类:第一阶段(0 - 6小时)、第二阶段(6 - 16小时)、第三阶段(16 - 24小时)和第四阶段(24小时)。接下来,为了进一步评估生物膜强度,通过测量早期和晚期形成的生物膜中强生物膜生产者和弱生物膜生产者的zeta(ζ)电位来测定静电差异。与强生物膜生产者相比,弱生物膜生产者的早期阶段具有更大的负静电电荷。同时,强生物膜生产者在早期阶段的负电荷较少,到第四阶段生物膜时负静电电荷增加。在所有时间点,形成弱生物膜的分离株的平均ζ电位明显比形成强生物膜的分离株更负(=≤0.04)。最后,为了阐明生物膜的最低根除浓度,我们用逐渐增加浓度的达托霉素、万古霉素或左氧氟沙星处理第四阶段的生物膜。达托霉素是唯一一种能使生物膜活力降低≥75%的抗生素,在32 - 256μg/mL(64 - 512×MIC)时可见,并且能显著降低所有强生物膜和弱生物膜中的残留生物膜。生物膜研究结果显示,在较低抗生素浓度下生物膜会出现意外的初始减少,随后在较高抗生素浓度下生物膜生物量增加。虽然较高的抗生素浓度可用于克服细菌耐药性并消除感染,但我们的结果表明,无论细菌生物膜强度如何,都会观察到抗菌耐药性,并且可能存在一个实现最大杀灭效果的最佳治疗浓度窗口。我们的数据进一步证明了生物膜在复发性感染中的作用以及抗生素浓度的重要性。

重要性

这项工作意义重大,因为它通过关注形成生物膜的感染的独特特征来解决标准抗生素测试中的一个关键差距,而形成生物膜的感染是复发性和慢性感染的主要原因。与评估浮游细菌的传统MIC测试不同,本研究强调了生物膜的存在、生长阶段和静电特性在确定治疗策略中的重要性。通过在一个易于重复的试验中将生物膜发育分类为不同阶段,并测量生物膜的zeta电位以找出关键差异以及生物膜对多种标准抗生素浓度的总体反应,本研究为生物膜研究的未来提供了有价值的见解。此外,它突出了达托霉素在根除生物膜方面的功效,同时确定了最佳抗生素浓度窗口的可能性,这是减轻耐药性和实现有效感染控制的关键考虑因素。这些发现强调了根据生物膜特定动态调整治疗的必要性,为生物膜相关感染提供了更有效的治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验