Suppr超能文献

基于注意力机制的电网维护文档手写中文识别

Attention-based handwritten Chinese recognition for power grid maintenance documents.

作者信息

Xiao Dajun, Xu Xialing, Shan Lianfei, Liu Tao, Li Xin, Zhang Yue

机构信息

Central China Power Dispatching and Control Center of State Grid, Wuhan, China.

NARI Group Corp. Co. Ltd (State Grid Electric Power Research Institute Co. Ltd), Nanjing, China.

出版信息

Sci Prog. 2025 Jan-Mar;108(1):368504241309786. doi: 10.1177/00368504241309786. Epub 2025 Mar 27.

Abstract

Recognizing handwritten Chinese documents can improve efficiency and productivity, which makes it a crucial task for power grid enterprises. This paper proposes a novel handwritten document recognition method to enhance recognition accuracy. First, spatial features are extracted from the input images using an inception module, which captures multi-scale spatial characteristics. Subsequently, a space channel parallel attention module is employed to emphasize significant features and suppress interference. The spatial features are then transformed by a bidirectional long short-term memory network, which predicts the probabilities of outputting Chinese characters. Finally, a transcription layer computes the prediction loss for each character, and the final prediction results are obtained after removing redundant placeholders. Validation experiments demonstrate that the accurate rate and correct rate of the proposed method reach 96.92% and 97.66%, respectively, indicating its effectiveness in capturing handwritten character features and improving accuracy, even under the challenge of diverse handwriting styles.

摘要

识别手写中文文档可以提高效率和生产力,这使其成为电网企业的一项关键任务。本文提出了一种新颖的手写文档识别方法,以提高识别准确率。首先,使用Inception模块从输入图像中提取空间特征,该模块可捕获多尺度空间特征。随后,采用空间通道并行注意力模块来突出重要特征并抑制干扰。然后,通过双向长短期记忆网络对空间特征进行变换,该网络预测输出汉字的概率。最后,转录层计算每个字符的预测损失,并在去除冗余占位符后获得最终预测结果。验证实验表明,该方法的准确率和正确率分别达到96.92%和97.66%,表明其在捕获手写字符特征和提高准确率方面的有效性,即使在多种手写风格的挑战下也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d5/11951872/47c123dad201/10.1177_00368504241309786-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验