Başaran Sena Nur, Öksüz Lütfiye
Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey.
Arch Microbiol. 2025 Apr 2;207(5):110. doi: 10.1007/s00203-025-04298-z.
Antimicrobial resistance stands as one of the most urgent global health concerns in the twenty-first century, with projections suggesting that deaths related to drug-resistant infections could escalate to 10 million by 2050 if proactive measures are not implemented. In intensive care settings, managing infections caused by multidrug-resistant (MDR) Gram-negative bacteria is particularly challenging, posing a significant threat to public health and contributing substantially to both morbidity and mortality. There are numerous studies on the antibiotics responsible for resistance in Gram-negative bacteria, but comprehensive research on resistance mechanisms against new antibiotics is rare. Considering the possibility that antibiotics may no longer be effective in combating diseases, it is crucial to comprehend the problem of emerging resistance to newly developed antibiotics and to implement preventive measures to curb the spread of resistance. Mutations in porins and efflux pumps play a crucial role in antibiotic resistance by altering drug permeability and active efflux. Porin modifications reduce the influx of antibiotics, whereas overexpression of efflux pumps, particularly those in the resistance-nodulation-cell division (RND) family, actively expels antibiotics from bacterial cells, significantly lowering intracellular drug concentrations and leading to treatment failure.This review examines the mechanisms of action, resistance profiles, and pharmacokinetic/pharmacodynamic characteristics of newly developed antibiotics designed to combat infections caused by MDR and carbapenem-resistant Gram-negative pathogens. The antibiotics discussed include ceftazidime-avibactam, imipenem-relebactam, ceftolozane-tazobactam, meropenem-vaborbactam, aztreonam-avibactam, delafloxacin, temocillin, plazomicin, cefiderocol, and eravacycline.
抗菌耐药性是21世纪最紧迫的全球卫生问题之一,据预测,如果不采取积极措施,到2050年与耐药性感染相关的死亡人数可能会增至1000万。在重症监护环境中,管理由多重耐药(MDR)革兰氏阴性菌引起的感染尤其具有挑战性,对公众健康构成重大威胁,并在很大程度上导致发病率和死亡率上升。关于革兰氏阴性菌耐药性的抗生素已有大量研究,但针对新型抗生素耐药机制的全面研究却很少。考虑到抗生素可能不再有效地对抗疾病,了解新开发抗生素出现的耐药性问题并实施预防措施以遏制耐药性传播至关重要。孔蛋白和外排泵的突变通过改变药物通透性和主动外排,在抗生素耐药性中起关键作用。孔蛋白修饰减少抗生素的流入,而外排泵的过度表达,尤其是耐药-结瘤-细胞分裂(RND)家族中的那些外排泵,会主动将抗生素从细菌细胞中排出,显著降低细胞内药物浓度并导致治疗失败。本综述研究了旨在对抗由MDR和耐碳青霉烯革兰氏阴性病原体引起的感染的新开发抗生素的作用机制、耐药谱以及药代动力学/药效学特征。所讨论的抗生素包括头孢他啶-阿维巴坦、亚胺培南-瑞来巴坦、头孢洛扎-他唑巴坦、美罗培南-巴尼巴坦、氨曲南-阿维巴坦、德拉沙星、替莫西林、普拉佐米星、头孢地尔、和依拉环素。