Suppr超能文献

通过在BiWO纳米花中对Cu/Cu对进行工程循环以促进光催化CO还原。

Engineering cycling of Cu/Cu pairs in BiWO nanoflowers for boosting photocatalytic CO reduction.

作者信息

Ai Lili, Liu Ziyi, Zhang Xinyi, Wang Luxiang, Jia Dianzeng, Guo Nannan, Zha Manning, Tan Chuan

机构信息

State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017 Xinjiang, PR China.

State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017 Xinjiang, PR China.

出版信息

J Colloid Interface Sci. 2025 Aug 15;692:137480. doi: 10.1016/j.jcis.2025.137480. Epub 2025 Mar 29.

Abstract

The photocatalytic reduction of CO represents an effective method for addressing environmental and energy crises. However, the slow migration and rapid recombination of photogenerated carriers have been identified as significant limitations on the efficiency of this process. Herein, we developed the cycling of Cu/Cu pairs in BiWO nanoflowers for boosting photocatalytic CO reduction. Cu is an electron trap that captures electrons to generate Cu, and Cu is unstable and prone to losing electrons to generate Cu in BiWO. The two processes are in concert to realize Cu/Cu cycling, which alters the charge transfer pathway and enhances the effective separation of photogenerated carriers for CO photoreduction reaction. Consequently, Cu-modified BiWO exhibited remarkable photocatalytic performance with the rate of CO and CH production reaching 165.28 and 16.49 μL·g in 3 h, which are 3.34 and 11.53 times that of the pristine BiWO. And the *COOH is the key to triggering the conversion of CO to CO, and *OC-CHOH is the key to forming CH by CC coupling. This work elucidates a dynamic copper valence cycling mechanism, establishing a paradigm for rational design of Cu-modified photocatalysts in solar-driven CO conversion.

摘要

光催化还原CO是解决环境和能源危机的有效方法。然而,光生载流子的缓慢迁移和快速复合已被认为是该过程效率的重大限制。在此,我们开发了BiWO纳米花中Cu/Cu对的循环以促进光催化CO还原。Cu是一个电子陷阱,它捕获电子生成Cu⁺,而Cu⁺不稳定,容易失去电子在BiWO₄中生成Cu²⁺。这两个过程协同作用以实现Cu⁺/Cu²⁺循环,这改变了电荷转移途径并增强了光生载流子在CO光还原反应中的有效分离。因此,Cu修饰的BiWO₄表现出显著的光催化性能,在3小时内CO和CH₄的生成速率分别达到165.28和16.49 μL·g⁻¹,分别是原始BiWO₄的3.34倍和11.53倍。并且*COOH是触发CO转化为CO₂的关键,*OC-CHOH是通过C-C偶联形成CH₄的关键。这项工作阐明了一种动态铜价循环机制,为太阳能驱动的CO转化中Cu修饰光催化剂的合理设计建立了一个范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验