Davín Adrián A, Woodcroft Ben J, Soo Rochelle M, Morel Benoit, Murali Ranjani, Schrempf Dominik, Clark James W, Álvarez-Carretero Sandra, Boussau Bastien, Moody Edmund R R, Szánthó Lénárd L, Richy Etienne, Pisani Davide, Hemp James, Fischer Woodward W, Donoghue Philip C J, Spang Anja, Hugenholtz Philip, Williams Tom A, Szöllősi Gergely J
The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia.
Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary.
Science. 2025 Apr 4;388(6742):eadp1853. doi: 10.1126/science.adp1853.
Microbial life has dominated Earth's history but left a sparse fossil record, greatly hindering our understanding of evolution in deep time. However, bacterial metabolism has left signatures in the geochemical record, most conspicuously the Great Oxidation Event (GOE). We combine machine learning and phylogenetic reconciliation to infer ancestral bacterial transitions to aerobic lifestyles, linking them to the GOE to calibrate the bacterial time tree. Extant bacterial phyla trace their diversity to the Archaean and Proterozoic, and bacterial families prior to the Phanerozoic. We infer that most bacterial phyla were ancestrally anaerobic and adopted aerobic lifestyles after the GOE. However, in the cyanobacterial ancestor, aerobic metabolism likely predated the GOE, which may have facilitated the evolution of oxygenic photosynthesis.
微生物生命主导了地球历史,但留下的化石记录稀少,极大地阻碍了我们对远古时期进化的理解。然而,细菌代谢在地球化学记录中留下了印记,最显著的是大氧化事件(GOE)。我们结合机器学习和系统发育和解来推断细菌向需氧生活方式的祖先转变,并将它们与大氧化事件联系起来以校准细菌时间树。现存的细菌门的多样性可追溯到太古宙和元古宙,以及显生宙之前的细菌家族。我们推断,大多数细菌门在祖先时期是厌氧的,并在大氧化事件之后采用了需氧生活方式。然而,在蓝细菌的祖先中,需氧代谢可能早于大氧化事件,这可能促进了氧光合作用的进化。