Leng Fangwei, Merino-Urteaga Raquel, Wang Xi, Zhang Wenxiang, Ha Taekjip, Hur Sun
Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Institute of Immunology, Chinese Institutes for Medical Research, Beijing 100069, China.
Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
Mol Cell. 2025 Apr 17;85(8):1509-1524.e7. doi: 10.1016/j.molcel.2025.03.005. Epub 2025 Apr 2.
Microsatellites are essential genomic components increasingly linked to transcriptional regulation. FoxP3, a transcription factor critical for regulatory T cell (Treg) development, recognizes TTTG repeat microsatellites by forming multimers along DNA. However, FoxP3 also binds a broader range of TnG repeats (n = 2-5), often at the edges of accessible chromatin regions. This raises questions about how FoxP3 adapts to sequence variability and the potential role of nucleosomes. Using cryoelectron microscopy and single-molecule analyses, we show that murine FoxP3 assembles into various distinct supramolecular structures, depending on DNA sequence. This structural plasticity enables FoxP3 to bridge 2-4 DNA duplexes, forming ultrastable structures that coordinate multiple genomic loci. Nucleosomes further facilitate FoxP3 assembly by inducing local DNA bending, creating a nucleus that recruits distal DNA elements through multiway bridging. Our findings thus reveal FoxP3's unusual ability to shapeshift to accommodate evolutionarily dynamic microsatellites and its potential to reinforce chromatin boundaries and three-dimensional genomic architecture.
微卫星是重要的基因组组成部分,越来越多地与转录调控相关联。FoxP3是一种对调节性T细胞(Treg)发育至关重要的转录因子,它通过沿着DNA形成多聚体来识别TTTG重复微卫星。然而,FoxP3也能结合更广泛的TnG重复序列(n = 2 - 5),且往往位于可及染色质区域的边缘。这就引发了关于FoxP3如何适应序列变异性以及核小体潜在作用的问题。通过冷冻电子显微镜和单分子分析,我们发现小鼠FoxP3会根据DNA序列组装成各种不同的超分子结构。这种结构可塑性使FoxP3能够连接2至4条DNA双链,形成协调多个基因组位点的超稳定结构。核小体通过诱导局部DNA弯曲进一步促进FoxP3组装,形成一个核心,通过多路桥接招募远端DNA元件。因此,我们的研究结果揭示了FoxP3具有不同寻常的变形能力,以适应进化上动态变化的微卫星,以及它在加强染色质边界和三维基因组结构方面的潜力。