Suppr超能文献

基线临床病理特征模型可预测药物性肝损伤6个月时未缓解的情况。

Model of baseline clinicopathological features predicts non-resolution of drug-induced liver injury at 6 months.

作者信息

Bihari Chhagan, Sharma Shvetank, Giri Apoorva, Yadav Raj Pal, Baweja Sukriti, Rastogi Archana, Sarin Shiv Kumar

机构信息

Department of Pathology, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India.

Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India.

出版信息

Hepatol Int. 2025 Jun;19(3):633-646. doi: 10.1007/s12072-025-10814-6. Epub 2025 Apr 3.

Abstract

INTRODUCTION

Chronicity in drug-induced liver injury (DILI) is assessed at 12 months, leading to a large time gap from its initial presentation. In this study, we developed a model that could predict biochemical non-resolution in DILI (DILI-NR) patients at 6 months using baseline clinicopathological data.

PATIENTS AND METHODS

Cases of DILI with liver biopsies were enrolled between January 2016 and December 2021. BSEP, MDR3, and MRP2 were assessed immunohistochemically. DILI-NR was considered a biochemical non-resolution 6 months after the onset of DILI. A separate cohort of 126 patients was taken as a validation cohort.

RESULTS

DILI-NR was noted in 59/407 patients (14.5%). DILI-NR patients had significantly higher body mass index, lower hemoglobin, more severe disease at the presentation, autoantibody positivity, higher IgG, association with co-morbidities, and were more aged. Pathologically, DILI-NR had increased ductular reaction, duct damage, duct loss, ductular bile plugs, and autoimmune hepatitis-like morphology along with lesser expression of canalicular transporters. On multivariate logistic regression (LR) analysis and XGBoost analysis, BMI, hemoglobin, presence of autoantibodies, disease severity at baseline, and lower expression of any one transporter were associated with DILI-NR (AUROC = 0.92). After calibrating the model on the test cohort, the LR model showed AUROC of 0.89 with an accuracy of 87.3% and precision of 91.5%, confirming the effectiveness of the model.

CONCLUSION

The model encompassing hemoglobin, BMI, presence of autoantibodies, disease severity, and reduced expression of canalicular proteins at baseline predicts the biochemical non-resolution of DILI at six months.

摘要

引言

药物性肝损伤(DILI)的慢性化在12个月时进行评估,这导致从其最初出现到评估存在较大的时间间隔。在本研究中,我们开发了一种模型,该模型可以使用基线临床病理数据预测DILI(DILI-NR)患者在6个月时生化指标未恢复正常的情况。

患者与方法

纳入2016年1月至2021年12月期间进行肝活检的DILI病例。采用免疫组织化学方法评估BSEP、MDR3和MRP2。DILI-NR被定义为DILI发病6个月后生化指标未恢复正常。另外选取126例患者作为验证队列。

结果

407例患者中有59例(14.5%)出现DILI-NR。DILI-NR患者的体重指数显著更高,血红蛋白更低,发病时病情更严重,自身抗体阳性率更高,IgG更高,合并症更多,且年龄更大。病理上,DILI-NR的小胆管反应增加、胆管损伤、胆管丢失、小胆管胆汁栓形成以及自身免疫性肝炎样形态,同时胆小管转运蛋白表达较低。多因素逻辑回归(LR)分析和XGBoost分析显示,体重指数、血红蛋白、自身抗体的存在、基线时的疾病严重程度以及任何一种转运蛋白的低表达与DILI-NR相关(曲线下面积[AUC] = 0.92)。在测试队列上对模型进行校准后,LR模型的AUC为0.89,准确率为87.3%,精确率为91.5%,证实了该模型的有效性。

结论

该模型综合了血红蛋白、体重指数、自身抗体的存在、疾病严重程度以及基线时胆小管蛋白表达降低的情况,可预测DILI在6个月时生化指标未恢复正常的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验