Wakabayashi Shun-Ichi, Kimura Takefumi, Tamaki Nobuharu, Iwadare Takanobu, Okumura Taiki, Kobayashi Hiroyuki, Yamashita Yuki, Tanaka Naoki, Kurosaki Masayuki, Umemura Takeji
Department of Medicine, Division of Gastroenterology Shinshu University School of Medicine Matsumoto Japan.
Consultation Center for Liver Diseases Shinshu University Hospital Matsumoto Japan.
JGH Open. 2025 Apr 4;9(4):e70150. doi: 10.1002/jgh3.70150. eCollection 2025 Apr.
Noninvasive tests (NITs), such as platelet-based indices and ultrasound/MRI elastography, are widely used to assess liver fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). However, platelet counts are not routinely included in Japanese health check-ups, limiting their utility in large-scale screenings. Additionally, elastography, while effective, is costly and less accessible in routine practice. Most existing AI-based models incorporate these markers, restricting their applicability. This study aimed to develop a simple yet accurate AI model for liver fibrosis staging using only routine demographic and biochemical markers.
This retrospective study analyzed biopsy-proven data from 463 Japanese MASLD patients. Patients were randomly assigned to training ( = 370, 80%) and test ( = 93, 20%) cohorts. The AI model incorporated age, sex, BMI, diabetes, hypertension, hyperlipidemia, and routine blood markers (AST, ALT, γ-GTP, HbA1c, glucose, triglycerides, cholesterol).
The Support Vector Machine model demonstrated high diagnostic performance, with an area under the curve (AUC) of 0.886 for detecting significant fibrosis (≥ F2). The AUCs for advanced fibrosis (≥ F3) and cirrhosis (F4) were 0.882 and 0.916, respectively. Compared to FIB-4, APRI, and FAST score (0.80-0.96), SVM achieved comparable accuracy while eliminating the need for platelet count or elastography.
This AI model accurately assesses liver fibrosis in MASLD patients without requiring platelet count or elastography. Its simplicity, cost-effectiveness, and strong diagnostic performance make it well-suited for large-scale health screenings and routine clinical use.
非侵入性检测(NITs),如基于血小板的指标以及超声/磁共振弹性成像,被广泛用于评估代谢功能障碍相关脂肪性肝病(MASLD)中的肝纤维化。然而,血小板计数在日本的健康检查中并非常规项目,这限制了其在大规模筛查中的应用。此外,弹性成像虽然有效,但成本高昂且在常规实践中较难普及。大多数现有的基于人工智能的模型都纳入了这些指标,限制了它们的适用性。本研究旨在仅使用常规人口统计学和生化指标开发一种简单而准确的用于肝纤维化分期的人工智能模型。
这项回顾性研究分析了463例经活检证实的日本MASLD患者的数据。患者被随机分配到训练组(n = 370,80%)和测试组(n = 93,20%)。该人工智能模型纳入了年龄、性别、体重指数、糖尿病、高血压、高脂血症以及常规血液指标(谷草转氨酶、谷丙转氨酶、γ-谷氨酰转肽酶、糖化血红蛋白、血糖甘油三酯、胆固醇)。
支持向量机模型显示出较高的诊断性能,检测显著纤维化(≥F2)的曲线下面积(AUC)为0.886。晚期纤维化(≥F3)和肝硬化(F4)的AUC分别为0.882和0.916。与FIB-4、APRI和FAST评分(0.80 - 0.96)相比,支持向量机在无需血小板计数或弹性成像的情况下达到了相当的准确性。
该人工智能模型无需血小板计数或弹性成像即可准确评估MASLD患者的肝纤维化。其简单性、成本效益和强大的诊断性能使其非常适合大规模健康筛查和常规临床应用。