Suppr超能文献

CoPPIs算法:一种揭示病理生理条件下蛋白质协同策略的工具。

CoPPIs algorithm: a tool to unravel protein cooperative strategies in pathophysiological conditions.

作者信息

Lomagno Andrea, Yusuf Ishak, Tosadori Gabriele, Bonanomi Dario, Luigi Mauri Pietro, Di Silvestre Dario

机构信息

Clinical Proteomics Laboratory, Elixir Infrastructure, Institute for Biomedical Technologies - National Research Council, F.lli Cervi 93, 20054 Segrate, Milan, Italy.

Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14200 Praha 4, Czech Republic.

出版信息

Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf146.

Abstract

We present here the co-expressed protein-protein interactions algorithm. In addition to minimizing correlation-causality imbalance and contextualizing protein-protein interactions to the investigated systems, it combines protein-protein interactions and protein co-expression networks to identify differentially correlated functional modules. To test the algorithm, we processed a set of proteomic profiles from different brain regions of controls and subjects affected by idiopathic Parkinson's disease or carrying a GBA1 mutation. Its robustness was supported by the extraction of functional modules, related to translation and mitochondria, whose involvement in Parkinson's disease pathogenesis is well documented. Furthermore, the selection of hubs and bottlenecks from the weightedprotein-protein interactions networks provided molecular clues consistent with the Parkinson pathophysiology. Of note, like quantification, the algorithm revealed less variations when comparing disease groups than when comparing diseased and controls. However, correlation and quantification results showed low overlap, suggesting the complementarity of these measures. An observation that opens the way to a new investigation strategy that takes into account not only protein expression, but also the level of coordination among proteins that cooperate to perform a given function.

摘要

我们在此展示共表达蛋白质-蛋白质相互作用算法。除了最小化相关性-因果关系失衡并将蛋白质-蛋白质相互作用置于所研究系统的背景中之外,它还结合了蛋白质-蛋白质相互作用和蛋白质共表达网络,以识别差异相关的功能模块。为了测试该算法,我们处理了一组来自对照组以及患有特发性帕金森病或携带GBA1突变的受试者不同脑区的蛋白质组学图谱。从与翻译和线粒体相关的功能模块中提取的结果支持了该算法的稳健性,这些功能模块在帕金森病发病机制中的作用已有充分记录。此外,从加权蛋白质-蛋白质相互作用网络中选择枢纽和瓶颈提供了与帕金森病病理生理学一致的分子线索。值得注意的是,与定量分析一样,该算法显示在比较疾病组时的变化比比较患病组与对照组时要少。然而,相关性和定量分析结果显示重叠度较低,表明这些测量方法具有互补性。这一观察结果为一种新的研究策略开辟了道路,该策略不仅考虑蛋白质表达,还考虑协同执行特定功能的蛋白质之间的协调水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f07/11975363/bf4d1e0cba5d/bbaf146f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验