Wang Pan, Xie Weirong, Zhang Jin, Sun Ya, Huang Siyuan, Chen Shaowen, Xiao Chengyu, Fan Tongxiang, Zheng Yuebing, Zhang Di, Zhou Han
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, P. R. China.
Adv Mater. 2025 Jun;37(24):e2412328. doi: 10.1002/adma.202412328. Epub 2025 Apr 7.
Dynamic thermal management materials are pivotal for advancing energy-efficient buildings and promoting global sustainability. However, existing materials typically offer only a single-function of temperature regulation, lacking the integrated power supply capability essential for sustaining indoor activities and building sustainability, particularly in the face of frequent power outages. A photonic battery that combines all-season dynamic radiative thermoregulation with electrical power supply in a single silicon-based unit is demonstrated. This device delivers dual functionality with high infrared emissivity regulation (0.53 at 8-13 µm) and superior energy storage performance, featuring a high specific capacity (≈3271 mAh g), areal capacity (≈0.38 mAh cm), and efficient energy recycling (71.6%). A reversible ion-interaction-induced phase change mechanism, enabling continuous and non-volatile electro-optical-thermal transformation and significant infrared tunability, is proposed. Our simulations indicate that the implementation of these dynamic materials into buildings could significantly reduce energy consumption by up to 18.4%, equating to 544.8 GJ, and achieve an annual reduction in CO emissions of 124.1 tons. This work paves the way for the development of energy-saving electro-driven dynamic materials, marking a significant step forward in global sustainability initiatives.
动态热管理材料对于推进节能建筑和促进全球可持续发展至关重要。然而,现有材料通常仅提供单一的温度调节功能,缺乏维持室内活动和建筑可持续性所必需的集成供电能力,尤其是在面对频繁停电的情况下。本文展示了一种基于单晶硅单元的光子电池,它结合了全季节动态辐射热调节和供电功能。该器件具有双重功能,具有高红外发射率调节能力(8-13μm波段发射率为0.53)和卓越的储能性能,其比容量高(约3271 mAh g)、面积容量高(约0.38 mAh cm)且能量回收效率高(71.6%)。本文提出了一种可逆离子相互作用诱导的相变机制,该机制能够实现连续且非易失性的电光热转换以及显著的红外可调性。我们的模拟表明,将这些动态材料应用于建筑中可显著降低能耗,最多可降低18.4%,相当于544.8 GJ,并实现每年减少124.1吨的二氧化碳排放。这项工作为节能电驱动动态材料的发展铺平了道路,标志着全球可持续发展倡议向前迈出了重要一步。