Ghirotto Bruno, Gonçalves Luís Eduardo, Ruder Vivien, James Christina, Gerasimova Elizaveta, Rizo Tania, Wend Holger, Farrell Michaela, Gerez Juan Atilio, Prymaczok Natalia Cecilia, Kuijs Merel, Shulman Maiia, Hartebrodt Anne, Prots Iryna, Gessner Arne, Zunke Friederike, Winkler Jürgen, Blumenthal David B, Theis Fabian J, Riek Roland, Günther Claudia, Neurath Markus, Gupta Pooja, Winner Beate
Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
International Max Planck Research School in Physics and Medicine, Erlangen, Germany.
bioRxiv. 2025 Mar 26:2025.03.25.644826. doi: 10.1101/2025.03.25.644826.
Gastrointestinal (GI) dysfunction emerges years before motor symptoms in Parkinson's disease (PD), implicating the enteric nervous system (ENS) in early disease progression. However, the mechanisms linking the PD hallmark protein, α-synuclein (α-syn), to ENS dysfunction - and whether these mechanisms are influenced by inflammation - remains elusive. Using iPSC-derived enteric neural lineages from patients with α-syn triplications, we reveal that TNF-α increases mitochondrial-α-syn interactions, disrupts the malate-aspartate shuttle, and forces a metabolic shift toward glutamine oxidation. These alterations drive mitochondrial dysfunction, characterizing metabolic impairment under cytokine stress. Interestingly, targeting glutamate metabolism with Chicago Sky Blue 6B restores mitochondrial function, reversing TNF-α-driven metabolic disruption. Our findings position the ENS as a central player in PD pathogenesis, establishing a direct link between cytokines, α-syn accumulation, metabolic stress and mitochondrial dysfunction. By uncovering a previously unrecognized metabolic vulnerability in the ENS, we highlight its potential as a therapeutic target for early PD intervention.
在帕金森病(PD)中,胃肠(GI)功能障碍在运动症状出现前数年就已出现,这表明肠神经系统(ENS)参与了疾病的早期进展。然而,将PD标志性蛋白α-突触核蛋白(α-syn)与ENS功能障碍联系起来的机制,以及这些机制是否受炎症影响,仍然不清楚。利用来自α-syn三倍体患者的诱导多能干细胞(iPSC)衍生的肠神经谱系,我们发现肿瘤坏死因子-α(TNF-α)增加线粒体-α-syn相互作用,破坏苹果酸-天冬氨酸穿梭,并促使代谢转向谷氨酰胺氧化。这些改变导致线粒体功能障碍,表现为细胞因子应激下的代谢损伤。有趣的是,用芝加哥天蓝6B靶向谷氨酸代谢可恢复线粒体功能,逆转TNF-α驱动的代谢紊乱。我们的研究结果表明ENS在PD发病机制中起核心作用,在细胞因子、α-syn积累、代谢应激和线粒体功能障碍之间建立了直接联系。通过揭示ENS中以前未被认识的代谢脆弱性,我们强调了其作为PD早期干预治疗靶点的潜力。