Suppr超能文献

使用全身炎症标志物评估乳腺癌新辅助化疗疗效的预测模型。

Predictive model using systemic inflammation markers to assess neoadjuvant chemotherapy efficacy in breast cancer.

作者信息

Sun Yulu, Guan Yinan, Yu Hao, Zhang Yin, Tao Jinqiu, Zhang Weijie, Yao Yongzhong

机构信息

Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.

出版信息

Front Oncol. 2025 Mar 24;15:1552802. doi: 10.3389/fonc.2025.1552802. eCollection 2025.

Abstract

BACKGROUND

Pathological complete response (pCR) is an important indicator for evaluating the efficacy of neoadjuvant chemotherapy (NAC) in breast cancer. The role of systemic inflammation markers in predicting pCR and the long-term prognosis of breast cancer patients undergoing NAC remains controversial. The purpose of this study was to explore the potential predictive and prognostic value of systemic inflammation markers (NLR, PLR, LMR, NMR) and clinicopathological characteristics in breast cancer patients receiving NAC and construct a pCR prediction model based on these indicators.

METHODS

A retrospective analysis was conducted on 209 breast cancer patients who received NAC at Nanjing Drum Tower Hospital between January 2010 and March 2020. Independent sample t-tests, chi-square tests, and logistic regression models were used to evaluate the correlation between clinicopathological data, systemic inflammation markers, and pCR. Receiver operating characteristic (ROC) curves were utilized to determine the optimal cut-off values for NLR, PLR, and LMR. Survival analysis was performed using the Kaplan-Meier method and log-rank test. A predictive model for pCR was constructed using machine learning algorithms.

RESULTS

Among the 209 breast cancer patients, 29 achieved pCR. During a median follow-up of 68 months, 74 patients experienced local or distant metastasis, and 56 patients died. Univariate logistic regression analysis showed that lymph node status, HER-2 status, NLR, PLR, and LMR were associated with pCR. ROC curve analysis revealed that the optimal cut-off values for NLR, PLR, and LMR were 1.525, 113.620, and 6.225, respectively. Multivariate logistic regression analysis indicated that lymph node status, NLR, and LMR were independent predictive factors for pCR. Survival analysis demonstrated that lymph node status, NLR, and LMR were associated with prognosis. Machine learning algorithm analysis identified the random forest (RF) model as the optimal predictive model for pCR.

CONCLUSION

This study demonstrated that lymph node status, NLR, and LMR had significant value in predicting pCR and prognosis in breast cancer patients. The RF model provides a simple and cost-effective tool for pCR prediction, offering strong support for clinical decision-making in breast cancer treatment and aiding in the optimization of individualized treatment strategies.

摘要

背景

病理完全缓解(pCR)是评估乳腺癌新辅助化疗(NAC)疗效的重要指标。全身炎症标志物在预测接受NAC的乳腺癌患者的pCR及长期预后中的作用仍存在争议。本研究旨在探讨全身炎症标志物(中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、淋巴细胞与单核细胞比值(LMR)、中性粒细胞与单核细胞比值(NMR))和临床病理特征在接受NAC的乳腺癌患者中的潜在预测和预后价值,并基于这些指标构建pCR预测模型。

方法

对2010年1月至2020年3月在南京鼓楼医院接受NAC的209例乳腺癌患者进行回顾性分析。采用独立样本t检验、卡方检验和逻辑回归模型评估临床病理数据、全身炎症标志物与pCR之间的相关性。利用受试者工作特征(ROC)曲线确定NLR、PLR和LMR的最佳截断值。采用Kaplan-Meier法和对数秩检验进行生存分析。使用机器学习算法构建pCR预测模型。

结果

在209例乳腺癌患者中,29例达到pCR。在中位随访68个月期间,74例患者发生局部或远处转移,56例患者死亡。单因素逻辑回归分析显示,淋巴结状态、人表皮生长因子受体2(HER-2)状态、NLR、PLR和LMR与pCR相关。ROC曲线分析显示,NLR、PLR和LMR的最佳截断值分别为1.525、113.620和6.225。多因素逻辑回归分析表明,淋巴结状态、NLR和LMR是pCR的独立预测因素。生存分析表明,淋巴结状态、NLR和LMR与预后相关。机器学习算法分析确定随机森林(RF)模型为pCR的最佳预测模型。

结论

本研究表明,淋巴结状态、NLR和LMR在预测乳腺癌患者的pCR和预后方面具有重要价值。RF模型为pCR预测提供了一种简单且经济高效的工具,为乳腺癌治疗的临床决策提供了有力支持,并有助于优化个体化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1221/11973675/260123d2a326/fonc-15-1552802-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验