Vandewalle Julie, Desouter Aster K, Van der Auwera Bart J, Chapaza Kaven B, Nobels Frank, Abrams Pascale, Lebrethon Marie-Christine, Lapauw Bruno, Keymeulen Bart, Gorus Frans K, Van de Casteele Mark
Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
Heliyon. 2025 Jan 21;11(3):e42156. doi: 10.1016/j.heliyon.2025.e42156. eCollection 2025 Feb 15.
Besides variation within the HLA gene complex determining a major part of genetic susceptibility to Type 1 diabetes, genome-wide association studies have identified over 60 non-HLA loci also contributing to disease risk. While individual single nucleotide polymorphisms (SNPs) have limited predictive power, genetic risk scores (GRS) can identify at-risk individuals. However, current models do not fully capture the heterogeneous progression of asymptomatic islet autoimmunity, especially in autoantibody-positive subjects. In this study, we investigated the additional stage-specific impact of 17 non-HLA loci on previously established prediction models in 448 persistently autoantibody-positive first-degree relatives. Cox regression and Kaplan Meier survival analysis were used to assess their influence on progression from single to multiple autoantibody-positivity, and from there to clinical onset. and significantly accelerated progression of single to multiple autoAb-positivity, but only in presence of insulin autoantibodies and HLA-DQ2/DQ8, respectively. At the stage of multiple autoantibody-positivity, progression to clinical onset was impacted by various non-HLA SNPs either as independent predictors (, , , , and ) or through interaction with HLA class I alleles (, , ), maternal diabetes status (), or a high-risk autoantibody-profile (). Our data indicate that, unlike for GRS, the weight of distinct non-HLA polymorphisms varies significantly among individuals at risk, depending on disease stage and other stage-specific risk factors. They refine our previous stage-specific prediction models including age, autoantibody-profile, HLA genotype, and other non-HLA SNPs, and emphasize the importance of stratifying accordingly to personalize time-to-event prediction in risk groups, or for preparing or interpreting prevention trials.
除了HLA基因复合物内的变异决定了1型糖尿病遗传易感性的主要部分外,全基因组关联研究还发现了60多个非HLA基因座也与疾病风险有关。虽然单个单核苷酸多态性(SNP)的预测能力有限,但遗传风险评分(GRS)可以识别有风险的个体。然而,目前的模型并不能完全捕捉无症状胰岛自身免疫的异质性进展,尤其是在自身抗体阳性的受试者中。在本研究中,我们调查了17个非HLA基因座对448名持续自身抗体阳性的一级亲属中先前建立的预测模型的额外阶段特异性影响。使用Cox回归和Kaplan Meier生存分析来评估它们对从单一自身抗体阳性进展到多个自身抗体阳性,以及从那里到临床发病的影响。 和 分别显著加速了从单一自身抗体阳性到多个自身抗体阳性的进展,但仅分别在存在胰岛素自身抗体和HLA-DQ2/DQ8的情况下。在多个自身抗体阳性阶段,进展到临床发病受到各种非HLA SNP的影响,这些SNP要么作为独立预测因子( 、 、 、 、 和 ),要么通过与HLA I类等位基因( 、 、 )、母亲糖尿病状态( )或高风险自身抗体谱( )相互作用。我们的数据表明,与GRS不同,不同非HLA多态性的权重在有风险的个体中差异很大,这取决于疾病阶段和其他阶段特异性风险因素。它们完善了我们先前的阶段特异性预测模型,包括年龄、自身抗体谱、HLA基因型和其他非HLA SNP,并强调了相应分层以个性化风险组中事件发生时间预测的重要性,或用于准备或解释预防试验。