Suppr超能文献

用于口腔黏膜疾病识别的亚漫反射光谱联合机器学习方法

Sub-diffuse Reflectance Spectroscopy Combined With Machine Learning Method for Oral Mucosal Disease Identification.

作者信息

Zhang Limin, Chang Qing, Zhang Qi, Zou Siyi, Liu Dongyuan, Gao Feng, Liu Chenlu

机构信息

College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China.

Department of Oral Medicine, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.

出版信息

Lasers Surg Med. 2025 Apr;57(4):339-351. doi: 10.1002/lsm.70011. Epub 2025 Apr 8.

Abstract

OBJECTIVES

Oral squamous cell carcinoma (OSCC) is the sixth-highest incidence of malignant tumors worldwide. However, early diagnosis is complex owing to the impracticality of biopsying every potentially premalignant intraoral lesion. Here, we present a sub-diffuse reflectance spectroscopy combined with a machine learning method for oral mucosal disease identification. This method provides a noninvasive cost-effective identification option for early signs of malignancy.

METHODS

Sub-diffuse spectra of three oral sites (hypoglottis, buccal, and gingiva) from healthy subjects and three types of mucosal lesions (oral lichen planus, OLP, oral leukoplakia, OLK, and OSCC) from patients were collected by using a home-made sub-diffuse reflectance spectroscopy prototype system, and three features including spectra ratio (SR), first-order derivative(DE) of the spectra and optical parameters (OP) were derived from the original spectra to enhance the insights into the optical properties of the oral mucosal tissues. To accurately classify the spectral features, a support vector machine (SVM) and probabilistic neural network (PNN) were employed.

RESULT

Most of the statistical distributions of the spectral features demonstrated obvious differences and the two classification methods exhibited comparable performances. For the classification in the oral sites of healthy subjects, the OP-based classification results were unsatisfactory, while the classification results utilizing DR, SR, and DE achieved a least accuracy of 0.8289, sensitivity of 0.8495, sensitivity of 0.9311, and Matthews correlation coefficient of 0.8085. Comparatively, the classification results between OLP, OLK, OSCC, and normal tissue obtained achieved high indexes even using the OP feature.

CONCLUSION

Integrating sub-diffuse reflectance spectroscopy measurement and suitable machine learning methods can obtain remarkable precision in differentiating different sites of oral mucosa and identifying different types of oral mucosal diseases, especially based on DE features. It is of great help in detecting OSCC and is expected to be a highly sensitive, time-sensitive, and accurate method for oral disease detection.

摘要

目的

口腔鳞状细胞癌(OSCC)是全球发病率第六高的恶性肿瘤。然而,由于对每个潜在的口腔癌前病变进行活检不切实际,早期诊断较为复杂。在此,我们提出一种结合机器学习方法的亚漫反射光谱法用于口腔黏膜疾病识别。该方法为恶性肿瘤的早期迹象提供了一种无创且经济高效的识别选择。

方法

使用自制的亚漫反射光谱原型系统收集健康受试者三个口腔部位(下咽、颊部和牙龈)以及患者三种类型黏膜病变(口腔扁平苔藓、OLP、口腔白斑、OLK和OSCC)的亚漫反射光谱,并从原始光谱中提取光谱比(SR)、光谱的一阶导数(DE)和光学参数(OP)这三个特征,以增强对口腔黏膜组织光学特性的认识。为了准确分类光谱特征,采用了支持向量机(SVM)和概率神经网络(PNN)。

结果

大多数光谱特征的统计分布显示出明显差异,两种分类方法表现出相当的性能。对于健康受试者口腔部位的分类,基于OP的分类结果不理想,而利用DR、SR和DE的分类结果最低准确率为0.8289,灵敏度为0.8495,灵敏度为0.9311,马修斯相关系数为0.8085。相比之下,即使使用OP特征,OLP、OLK、OSCC和正常组织之间的分类结果也获得了较高指标。

结论

将亚漫反射光谱测量与合适的机器学习方法相结合,在区分口腔黏膜不同部位和识别不同类型的口腔黏膜疾病方面可以获得显著的精度,尤其是基于DE特征。这对检测OSCC有很大帮助,有望成为一种用于口腔疾病检测的高灵敏度、时间敏感且准确的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验