Suppr超能文献

利用人工智能通过面部表情诊断儿童自闭症。

Leveraging artificial intelligence for diagnosis of children autism through facial expressions.

作者信息

Mahmood Mahmood A, Jamel Leila, Alturki Nazik, Tawfeek Medhat A

机构信息

Department of Information Systems, College of Computer and Information Sciences, Jouf University, 72341, Sakaka, Aljouf, Kingdom of Saudi Arabia.

Department of Information Systems and Technology, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt.

出版信息

Sci Rep. 2025 Apr 8;15(1):11945. doi: 10.1038/s41598-025-96014-6.

Abstract

The global population contains a substantial number of individuals who experience autism spectrum disorder, thus requiring immediate identification to enable successful intervention approaches. The authors assess the detection of autism-related learning difficulties in children by evaluating deep learning models that use transfer learning methods along with fine-tuning methods. Using autism spectrum disorder (ASD) diagnosed child RGB images data, researchers evaluated six prevalent deep learning structures: DenseNet201, ResNet152, VGG16, VGG19, MobileNetV2, and EfficientNet-B0. ResNet152 reached the highest accuracy rate of 89% when functioning independently. This paper develops a hybrid deep-learning model by integrating ResNet152 with Vision Transformers (ViT) to achieve better classification performance. The ViT-ResNet152 model's convolutional and transformer processing elements worked together to improve the accuracy of the diagnosis to 91.33% and make it better at finding different cases of autism spectrum disorder (ASD).The research outcomes demonstrate that AI tools show promise for delivering highly precise and standardized methods to detect ASD at an early stage. Future research needs to include multiple data types as well as extend dataset variability while optimizing hybrid architecture systems to elevate diagnostic forecasting. The incorporation of artificial intelligence in ASD evaluation services holds promise to transform early therapy approaches, which leads to better results for autistic children all around the globe.

摘要

全球人口中有相当数量的人患有自闭症谱系障碍,因此需要立即进行识别,以便采用成功的干预方法。作者通过评估使用迁移学习方法和微调方法的深度学习模型,来评估儿童自闭症相关学习困难的检测情况。研究人员使用自闭症谱系障碍(ASD)诊断儿童的RGB图像数据,评估了六种常见的深度学习结构:DenseNet201、ResNet152、VGG16、VGG19、MobileNetV2和EfficientNet-B0。ResNet152独立运行时达到了最高准确率89%。本文通过将ResNet152与视觉Transformer(ViT)集成,开发了一种混合深度学习模型,以实现更好的分类性能。ViT-ResNet152模型的卷积和Transformer处理元素协同工作,将诊断准确率提高到91.33%,并使其在发现自闭症谱系障碍(ASD)的不同病例方面表现更好。研究结果表明,人工智能工具有望提供高度精确和标准化的方法,在早期阶段检测出自闭症谱系障碍。未来的研究需要纳入多种数据类型,并在优化混合架构系统的同时扩展数据集的可变性,以提高诊断预测能力。将人工智能纳入自闭症谱系障碍评估服务有望改变早期治疗方法,从而为全球自闭症儿童带来更好的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c4e/11978962/519871aac6c8/41598_2025_96014_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验