Suppr超能文献

骨质疏松性骨折固定的生物力学考量

Biomechanical Considerations in Osteoporotic Fracture Fixation.

作者信息

Kumar Ritabh

机构信息

Consultant Orthopaedics, Indian Spinal Injuries Center, Sector C, Vasant Kunj, New Delhi, 110070 India.

70, Munirka Vihar, Opposite JNU, New Delhi, 110067 India.

出版信息

Indian J Orthop. 2025 Jan 28;59(3):256-270. doi: 10.1007/s43465-024-01332-y. eCollection 2025 Mar.

Abstract

BACKGROUND

Osteoporotic Fractures (OF) present formidable but predictable challenges in fixation. With ageing the bone mineral density is reduced and the internal micro-architecture is disrupted. This increases fracture risk and makes implant hold tenuous. Newer implant technology has helped improve fracture fixation but the risks of early mechanical failure remain tangible.

PURPOSE

After fracture reduction and fixation, the surgeon remains apprehensive regarding rehabilitation. The concerns are higher in the lower limb where non-weight bearing is not possible. Understanding basic mechanics and translating that knowledge to fracture surgery helps provide secure surgical stability to enable full weight bearing assisted mobilization.

CONCLUSION

Applying the logic of mechanics to living biological tissue will help the surgeon better understand the unique mechanical requirements of the fractured bone. Judicious surgical technique and careful combination of implants balancing the mechanical and biological needs of the ageing broken bone will help it heal. Integrating technology and surgical technique with the established principles of osteosynthesis will help improve functional outcomes in OF.

摘要

背景

骨质疏松性骨折(OF)在固定方面面临巨大但可预测的挑战。随着年龄增长,骨矿物质密度降低,内部微结构遭到破坏。这增加了骨折风险,使植入物的固定变得薄弱。更新的植入技术有助于改善骨折固定,但早期机械故障的风险仍然切实存在。

目的

在骨折复位和固定后,外科医生对于康复仍心存忧虑。在下肢无法进行非负重活动时,这种担忧更为强烈。理解基本力学原理并将这些知识应用于骨折手术,有助于提供可靠的手术稳定性,以实现完全负重辅助下的活动。

结论

将力学原理应用于活体生物组织,将有助于外科医生更好地理解骨折骨骼独特的力学需求。明智的手术技术以及谨慎组合植入物以平衡老化骨折骨骼的力学和生物学需求,将有助于其愈合。将技术和手术技术与既定的骨接合原则相结合,将有助于改善骨质疏松性骨折的功能预后。

相似文献

1
Biomechanical Considerations in Osteoporotic Fracture Fixation.
Indian J Orthop. 2025 Jan 28;59(3):256-270. doi: 10.1007/s43465-024-01332-y. eCollection 2025 Mar.
2
Rehabilitation After Lower Limb Fracture Fixation in Osteoporotic Bone.
Indian J Orthop. 2024 Dec 21;59(3):405-413. doi: 10.1007/s43465-024-01325-x. eCollection 2025 Mar.
3
Rehabilitation for ankle fractures in adults.
Cochrane Database Syst Rev. 2024 Sep 23;9(9):CD005595. doi: 10.1002/14651858.CD005595.pub4.
4
Femoral neck fractures after removal of hardware in healed trochanteric fractures.
Injury. 2017 Dec;48(12):2619-2624. doi: 10.1016/j.injury.2017.11.031.
5
What Factors Are Associated With Implant Revision in the Treatment of Pathologic Subtrochanteric Femur Fractures?
Clin Orthop Relat Res. 2025 Mar 1;483(3):473-484. doi: 10.1097/CORR.0000000000003291. Epub 2024 Oct 22.
7
Are There Differences in Performance Among Femoral Stem Brands Utilized in Cementless Hemiarthroplasty for Treatment of Geriatric Femoral Neck Fractures?
Clin Orthop Relat Res. 2025 Feb 1;483(2):253-264. doi: 10.1097/CORR.0000000000003222. Epub 2024 Aug 15.
8
Rehabilitation for ankle fractures in adults.
Cochrane Database Syst Rev. 2012 Nov 14;11:CD005595. doi: 10.1002/14651858.CD005595.pub3.
9
Cephalomedullary nails versus extramedullary implants for extracapsular hip fractures in older adults.
Cochrane Database Syst Rev. 2022 Jan 26;1(1):CD000093. doi: 10.1002/14651858.CD000093.pub6.
10
Fixation Failure in Osteoporotic Bone: A Review of Complications and Outcomes.
Indian J Orthop. 2024 Dec 21;59(3):389-404. doi: 10.1007/s43465-024-01316-y. eCollection 2025 Mar.

引用本文的文献

本文引用的文献

1
Biomechanics of Osteoporotic Fracture Fixation.
Curr Osteoporos Rep. 2019 Dec;17(6):363-374. doi: 10.1007/s11914-019-00535-9.
2
Osteoporotic Bone: When and How to Use Augmentation?
J Orthop Trauma. 2019 Dec;33 Suppl 8:S21-S26. doi: 10.1097/BOT.0000000000001643.
3
Augmented Fixation for Fractures of the Appendicular Skeleton.
J Am Acad Orthop Surg. 2019 Nov 15;27(22):823-833. doi: 10.5435/JAAOS-D-18-00471.
4
Paradigm shift in geriatric fracture treatment.
Eur J Trauma Emerg Surg. 2019 Apr;45(2):181-189. doi: 10.1007/s00068-019-01080-x. Epub 2019 Feb 6.
5
Surgical treatment of osteoporotic fractures: An update on the principles of management.
Injury. 2017 Dec;48 Suppl 7:S34-S40. doi: 10.1016/j.injury.2017.08.036. Epub 2017 Sep 4.
6
Bone mechanical properties and changes with osteoporosis.
Injury. 2016 Jun;47 Suppl 2(Suppl 2):S11-20. doi: 10.1016/S0020-1383(16)47003-8.
7
Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading.
Clin Biomech (Bristol). 2015 May;30(4):391-6. doi: 10.1016/j.clinbiomech.2015.02.006. Epub 2015 Feb 14.
8
Biomechanical concepts applicable to minimally invasive fracture repair in small animals.
Vet Clin North Am Small Anim Pract. 2012 Sep;42(5):853-72, v. doi: 10.1016/j.cvsm.2012.07.007.
9
The concept of locking plates.
Orthop Traumatol Surg Res. 2010 May 4. doi: 10.1016/j.otsr.2010.03.008.
10
Microarchitecture, the key to bone quality.
Rheumatology (Oxford). 2009 Oct;48 Suppl 4:iv3-8. doi: 10.1093/rheumatology/kep273.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验