Duan Kangjun, Köble Kerstin, Ershov Alexey, Schilling Monja, Rampf Alexander, Cecilia Angelica, Faragó Tomáš, Zuber Marcus, Baumbach Tilo, Sui Pang-Chieh, Zeis Roswitha
Helmholtz Institute Ulm, Karlsruhe Institute of Technology, 89081, Ulm, Germany.
Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
ChemSusChem. 2025 Jul 1;18(13):e202500282. doi: 10.1002/cssc.202500282. Epub 2025 Apr 24.
The parasitic hydrogen evolution reaction (HER) hinders electrolyte transport. It reduces the effective electrochemical surface area in the negative half-cell of vanadium redox flow batteries (VRFBs), resulting in substantial efficiency losses. This study investigates the formation and evolution of hydrogen bubbles within VRFB electrodes through comprehensive experimental characterization and a detailed analysis of the resolved bubbles. The electrode is imaged using synchrotron X-ray tomography, and gas bubbles in the images are identified and characterized using a deep learning model combined with a morphological analysis tool. The HER intensity increases at more negative working electrode potentials, causing residual bubbles to grow and fuse in the electrode central region. In contrast, independent bubbles predominantly form at the electrode edges. Furthermore, bubble growth leads to the gradual development of irregular shapes. These observations provide insights into bubble formation and evolution rules, contributing to a better understanding of the system.
寄生析氢反应(HER)阻碍了电解质传输。它减少了钒氧化还原液流电池(VRFB)负半电池中的有效电化学表面积,导致大量效率损失。本研究通过全面的实验表征和对解析气泡的详细分析,研究了VRFB电极内氢气泡的形成和演变。使用同步加速器X射线断层扫描对电极进行成像,并使用深度学习模型结合形态分析工具对图像中的气泡进行识别和表征。在更负的工作电极电位下,HER强度增加,导致残留气泡在电极中心区域生长并融合。相比之下,独立气泡主要在电极边缘形成。此外,气泡生长导致不规则形状的逐渐发展。这些观察结果为气泡形成和演变规律提供了见解,有助于更好地理解该系统。