Tahir Assam Bin, Khalil Anees Ahmed, Gull Hina, Ali Khubaib, AlMasoud Najla, Alomar Taghrid S, Aït-Kaddour Abderrahmane, Aadil Rana Muhammad
University Institute of Food Science and Technology, Faculty of Allied Health Science, University of Lahore.
University Institute of Diet and Nutrition Sciences, Faculty of Allied Health Science, University of Lahore.
Ultrason Sonochem. 2025 Jun;117:107342. doi: 10.1016/j.ultsonch.2025.107342. Epub 2025 Apr 4.
Diets based on pea protein have gained international recognition as a good substitute for meat or other main sources of protein. However, problems like gelling and emulsifying qualities make it difficult to use pea protein. To successfully overcome significant obstacles related to the use of pea protein in many industrial sectors, particularly meat, this study offers a combination of methods used to produce commercially accessible Pea Protein Isolate (PPI). High-intensity ultrasound (HIUS) at three magnitudes (2, 4, and 8 W/mL), heat at 60 °C, and pH at 10.0 were all integrated within the set. For artificial meat, PUHP, PUHP, and PUHP were the most promising of the nine treatments. After undergoing combined treatments (pH-shift, HIUS, and heat), favorable gelling was shown by treatments, emulsifying, and foaming properties while containing the ideal and desired protein size, as understood by the results in the gel electrophoresis. When treated PPIs were used to stabilize the sunflower oil-in-water emulsion, the emulsion capacity increased significantly for PUHP, PUHP, and PUHP (43.47 %, 46.57 %, and 40.90 % increase, respectively). Furthermore, solubility (for PUHP, PUHP, and PUHP) had shown considerable (p < 0.05) improvement from 31.03 % ± 2.11 % (DPPI) to 53.33 % ± 2.3 %, 55.13 % ± 1.0 %, and 58.43 % ± 3.2 %, in SEM which accompanied by differences in the morphology of protein. This study's gelling properties (2.512 ± 0.1 N, 2.604 ± 0.1 N, and 2.168 ± 0.3 N, for PUHP, PUHP, and PUHP) were crucial, primarily from the standpoint of plant-based meat analogs. The processes proposed by this study pea protein will be enabled that has undergone this series of chemical and physical processes to proceed in the direction of far better meat substitutes. Overall, this research contributes to the advancement of pea protein's use as an industrial protein and allows better usage of its hypoallergenic, non-GMO and high protein content.
以豌豆蛋白为基础的饮食已获得国际认可,成为肉类或其他主要蛋白质来源的良好替代品。然而,诸如胶凝和乳化特性等问题使得豌豆蛋白难以使用。为了成功克服在许多工业领域,特别是肉类行业中使用豌豆蛋白所面临的重大障碍,本研究提供了一系列用于生产商业上可获取的豌豆分离蛋白(PPI)的方法。该组合包括三种强度(2、4和8W/mL)的高强度超声(HIUS)、60°C的加热以及pH值为10.0。对于人造肉而言,在九种处理方法中,PUHP、PUHP和PUHP最具前景。经过联合处理(pH值调节、HIUS和加热)后,处理后的样品在胶凝、乳化和发泡性能方面表现良好,同时具有理想且符合要求的蛋白质大小,这从凝胶电泳结果中可以看出。当使用经处理的PPI来稳定水包油型向日葵乳液时,PUHP、PUHP和PUHP的乳液容量显著增加(分别增加43.47%、46.57%和40.90%)。此外,溶解度(对于PUHP、PUHP和PUHP)有显著(p < 0.05)提高,从31.03% ± 2.11%(DPPI)提高到53.33% ± 2.3%、55.13% ± 1.0%和58.43% ± 3.2%,在扫描电子显微镜下观察到蛋白质形态也存在差异。本研究中PUHP、PUHP和PUHP的胶凝特性(分别为2.512 ± 0.1N、2.604 ± 0.1N和2.168 ± 0.3N)至关重要,主要是从植物性肉类替代品的角度来看。本研究提出的豌豆蛋白经过这一系列化学和物理过程后,将能够朝着更好的肉类替代品方向发展。总体而言,本研究有助于推动豌豆蛋白作为工业蛋白质的应用,并使其低过敏性、非转基因和高蛋白含量得到更好的利用。