Bharath S, Vasuki A
Department of Electrical and Electronics Engineering, SNS College of Technology, Coimbatore, 641035, India.
Department of Electronics and Communication Engineering, Kumaraguru College of Technology, Coimbatore, 641049, India.
Sci Rep. 2025 Apr 9;15(1):12165. doi: 10.1038/s41598-025-97354-z.
Modern power distribution network incorporates distributed generation (DG) for numerous benefits. However, the incorporation creates numerous challenges in energy management and to handle the challenges it requires advanced optimization techniques for an effective operation of the network. Unlike traditional methods such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and standard Crow Search Algorithm (CSA), which suffer from premature convergence and limited adaptability to real-time variations, Reinforcement Learning Enhanced Crow Search Algorithm (RL-CSA) which is proposed in this research work solves network reconfiguration optimization problem and minimize energy losses. Unlike conventional heuristic methods, which follow predefined search patterns, RL-CSA dynamically refines its search trajectory based on real-time feedback, ensuring superior convergence speed and global search efficiency. The novel RL-CSA enables real-time adaptability and intelligent optimization for energy loss reduction in distributed networks. The proposed model validation is performed on the IEEE 33 and 69 Bus test systems considering diverse performance metrics such as power loss reduction, voltage stability, execution time, utilization efficiency for DG deployment, and energy cost minimization. Comparative results show that RL-CSA achieves a 78% reduction in energy losses, limiting power loss to 5 kW (IEEE 33-Bus) and 8 kW (IEEE 69-Bus) whereas traditional models converge at higher loss levels. The execution time is optimized to 1.4 s (IEEE 33-Bus) and 1.8 s (IEEE 69-Bus), significantly faster than GA, PSO, and CSA, making RL-CSA more efficient for real-time power distribution applications. By balancing exploration-exploitation using CSA while adapting search parameters through reinforcement learning, RL-CSA ensures scalability, improved DG utilization (98%), and better voltage stability (< 0.005 p.u.), making it a robust and intelligent alternative for modern smart grid optimization.
现代配电网集成了分布式发电(DG),带来诸多益处。然而,这种集成在能源管理方面带来了诸多挑战,为应对这些挑战,需要先进的优化技术来实现网络的有效运行。与传统方法如遗传算法(GA)、粒子群优化算法(PSO)和标准乌鸦搜索算法(CSA)不同,这些传统方法存在早熟收敛以及对实时变化适应性有限的问题,本研究工作中提出的强化学习增强乌鸦搜索算法(RL-CSA)解决了网络重构优化问题,并将能量损耗降至最低。与遵循预定义搜索模式的传统启发式方法不同,RL-CSA基于实时反馈动态优化其搜索轨迹,确保了卓越的收敛速度和全局搜索效率。这种新颖的RL-CSA实现了分布式网络中能量损耗降低的实时适应性和智能优化。所提出的模型在IEEE 33和69节点测试系统上进行了验证,考虑了多种性能指标,如功率损耗降低、电压稳定性、执行时间、分布式发电部署的利用效率以及能源成本最小化。对比结果表明,RL-CSA实现了78%的能量损耗降低,将功率损耗限制在5千瓦(IEEE 33节点)和8千瓦(IEEE 69节点),而传统模型在更高的损耗水平收敛。执行时间优化至1.4秒(IEEE 33节点)和1.8秒(IEEE 69节点),明显快于GA、PSO和CSA,使得RL-CSA在实时配电应用中更高效。通过使用CSA平衡探索与利用,同时通过强化学习调整搜索参数,RL-CSA确保了可扩展性、提高了分布式发电利用率(98%)以及更好的电压稳定性(<0.005标幺值),使其成为现代智能电网优化的一种强大且智能的替代方案。