Tatarsky Rose L, Akbari Najva, Wang Ke, Xu Chris, Bass Andrew H
Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA.
School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA.
J Comp Neurol. 2025 Apr;533(4):e70048. doi: 10.1002/cne.70048.
Animals integrate information from different sensory modalities as they mature and perform increasingly complex behaviors. This may parallel differential investment in specific brain regions depending on the changing demands of sensory inputs. To investigate developmental changes in the volume of canonical sensory regions, we used third harmonic generation imaging for morphometric analysis of forebrain and midbrain regions from larval through juvenile and adult stages in Danionella dracula, a transparent, miniature teleost fish whose brain is optically accessible throughout its lifespan. Relative to whole-brain volume, increased volume or investment in the telencephalon, a higher order sensory integration center, shows the most dramatic increases between 30-60 days postfertilization (dpf) and again at 90 dpf as animals reach adulthood. The torus longitudinalis (TL), a midbrain visuomotor integration center, also significantly increases between 60 and 90 dpf. In contrast, investment in the midbrain optic tectum (TeO), a retinal-recipient target, progressively decreases from 30 to 90 dpf, whereas investment is relatively consistent across all stages for the midbrain torus semicircularis (TS), a secondary auditory and mechanosensory lateral line center, and the olfactory bulb (OB), a direct target of the olfactory epithelium. In sum, increased investment in higher-order integration centers (telencephalon, TL) occurs as juveniles reach adulthood (60-90 dpf) and exhibit more complex cognitive tasks, whereas investment in modality-dominant regions occurs earlier (TeO) or is relatively consistent across development (TS, OB). Complete optical access throughout Danionella's lifespan provides a unique opportunity to investigate how changing brain structure over development correlates with changes in connectivity, microcircuitry, or behavior.
动物在成熟过程中整合来自不同感觉模态的信息,并执行越来越复杂的行为。这可能与根据感觉输入不断变化的需求而在特定脑区的不同投入有关。为了研究经典感觉区域体积的发育变化,我们使用三次谐波生成成像技术对透明小型硬骨鱼德古拉丹尼奥(Danionella dracula)从幼体到幼鱼和成体阶段的前脑和中脑区域进行形态计量分析,这种鱼的大脑在其整个生命周期中都可通过光学方式观察到。相对于全脑体积,端脑(一个高阶感觉整合中心)的体积增加或投入增加,在受精后30 - 60天(dpf)之间以及动物成年时再次在90 dpf时显示出最显著的增加。纵纹隆起(TL)是中脑视觉运动整合中心,在60到90 dpf之间也显著增加。相比之下,对中脑视顶盖(TeO)(视网膜接收目标)的投入从30到90 dpf逐渐减少,而对于中脑半规管隆起(TS)(一个次级听觉和机械感觉侧线中心)和嗅球(OB)(嗅觉上皮的直接目标),在所有阶段的投入相对一致。总之,随着幼鱼成年(60 - 90 dpf)并表现出更复杂的认知任务,对高阶整合中心(端脑、TL)的投入增加,而对模态主导区域的投入则更早出现(TeO)或在整个发育过程中相对一致(TS、OB)。德古拉丹尼奥整个生命周期的完全光学观察提供了一个独特的机会,来研究发育过程中不断变化的脑结构如何与连接性、微电路或行为的变化相关联。