Suppr超能文献

DeepATsers:一种用于一次性表面增强拉曼散射生物传感器检测新型冠状病毒的深度学习框架。

DeepATsers: a deep learning framework for one-pot SERS biosensor to detect SARS-CoV-2 virus.

作者信息

Nyamdavaa Ankhbayar, Kaladharan Kiran, Ganbold Erdene-Ochir, Jeong Seungdo, Paek Seonuck, Su Yansen, Tseng Fan-Gang, Ishdorj Tseren-Onolt

机构信息

Department of Computer Science, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia.

Department of Computer Science, New Mongol Institute of Technology, Ulaanbaatar, Mongolia.

出版信息

Sci Rep. 2025 Apr 10;15(1):12245. doi: 10.1038/s41598-025-96557-8.

Abstract

The integration of Artificial Intelligence (AI) techniques with medical kits has revolutionized disease diagnosis, enabling rapid and accurate identification of various conditions. We developed a novel deep learning model, namely DeepATsers based on a combination of CNN and GAN to employ a one-pot SERS biosensor to rapidly detect COVID-19 infection. The model accurately identifies each SARS-CoV-2 protein (S protein, N protein, VLP protein, Streptavidin protein, and blank signal) from its experimental fingerprint-like spectral data introduced in this study. Several augmentation techniques such as EMSA, Gaussian-noise, GAN, and K-fold cross-validation, and their combinations were utilized for the SERS spectral dataset generalization and prevented model overfitting. The original experimental dataset of 126 spectra was augmented to 780 spectra that resembled the original set by using GAN with a low KL divergence value of 0.02. This significantly improves the average accuracy of protein classification from 0.6000 to 0.9750. The deep learning model deployed optimal hyperparameters and outperformed in most measurements comparing supervised machine learning methods such as RF, GBM, SVM, and KNN, both with and without augmented spectral datasets. For model training, a whole range of spectra wavenumbers ([Formula: see text] to [Formula: see text]) as well as wavenumbers ([Formula: see text] and [Formula: see text]) only for fingerprint peak spectra were employed. The former led to highly accurate 0.9750 predictions in comparison to 0.4318 for the latter one. Finally, independent experimental spectra of SARS-CoV-2 Omicron variant were used in the model verification. Thus, DeepATsers can be considered a robust, generalized, and generative deep learning framework for 1D SERS spectral datasets of SARS-CoV-2.

摘要

人工智能(AI)技术与医疗试剂盒的整合彻底改变了疾病诊断方式,能够快速、准确地识别各种病症。我们基于卷积神经网络(CNN)和生成对抗网络(GAN)相结合的方式开发了一种新型深度学习模型,即DeepATsers,以利用一锅式表面增强拉曼光谱(SERS)生物传感器快速检测新型冠状病毒肺炎(COVID-19)感染。该模型能从本研究引入的实验性指纹状光谱数据中准确识别出每种严重急性呼吸综合征冠状病毒2(SARS-CoV-2)蛋白(S蛋白、N蛋白、病毒样颗粒(VLP)蛋白、链霉亲和素蛋白和空白信号)。采用了诸如电泳迁移率变动分析(EMSA)、高斯噪声、GAN和K折交叉验证等多种增强技术及其组合,用于SERS光谱数据集的泛化,并防止模型过拟合。通过使用KL散度值低至0.02的GAN,将126个光谱的原始实验数据集扩充到了780个类似于原始数据集的光谱。这显著提高了蛋白质分类的平均准确率,从0.6000提升至0.9750。该深度学习模型部署了最优超参数,在大多数测量中表现优于有监督的机器学习方法,如随机森林(RF)、梯度提升机(GBM)、支持向量机(SVM)和K近邻算法(KNN),无论有无扩充光谱数据集。对于模型训练,既采用了整个光谱波数范围([公式:见原文]至[公式:见原文]),也仅针对指纹峰光谱采用了波数([公式:见原文]和[公式:见原文])。与后者的0.4318相比,前者实现了高达0.9750的高精度预测。最后,在模型验证中使用了SARS-CoV-2奥密克戎变异株的独立实验光谱。因此,DeepATsers可被视为一种用于SARS-CoV-2的一维SERS光谱数据集的强大、通用且具有生成能力的深度学习框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b53/11985927/d7e09dd8b1d4/41598_2025_96557_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验