Li Tinghao, Wang Can, Hu Chongzhu, Zhang Ni, Xiong Qiu, Zhang Zilong, Li Feng, Zhang Yingyao, Wu Jihuai, Gao Peng
CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China.
Fujian Normal University Fuzhou 350007 China.
Small Sci. 2023 Nov 27;4(1):2300218. doi: 10.1002/smsc.202300218. eCollection 2024 Jan.
Defects occur in the bulk perovskite and heterojunction interfaces of perovskite solar cells (PSCs). While additive and interface engineering are commonly used to passivate defects within the perovskite phase and at the interface, the interconnections between these two strategies have not been fully explored. This study introduces an auxiliary passivation approach for enhancing the performance of PSCs by passivating both the perovskite phase and the buried interface using succinimide (SID), referred to as the multilayer passivation (MLP) strategy. By adding SID to a lead iodide precursor solution and depositing it on tin oxide film, the remarkable ability of SID to coordinate with Pb through Lewis-base coordination and bind the iodide ion with hydrogen bonds is demonstrated, thereby reducing defects within the perovskite and suppressing nonradiative recombination. Additionally, SID could passivate oxygen vacancy and hydroxyl defects on the SnO surface, facilitating carrier separation and extraction. This MLP strategy enables us to achieve a power conversion efficiency (PCE) of 24.47% based on a two-step process. Moreover, the unencapsulated devices maintain a PCE of 82% at 20 °C with 30% relative humidity after 7000 h. Overall, this study highlights the unparalleled potential of MLP strategy for enhancing the performance of PSCs.
钙钛矿太阳能电池(PSCs)的体相钙钛矿和异质结界面会出现缺陷。虽然添加剂和界面工程通常用于钝化钙钛矿相内和界面处的缺陷,但这两种策略之间的相互联系尚未得到充分探索。本研究引入了一种辅助钝化方法,即通过使用琥珀酰亚胺(SID)钝化钙钛矿相和掩埋界面来提高PSCs的性能,称为多层钝化(MLP)策略。通过将SID添加到碘化铅前驱体溶液中并将其沉积在氧化锡薄膜上,证明了SID通过路易斯碱配位与Pb配位并通过氢键结合碘离子的显著能力,从而减少钙钛矿内的缺陷并抑制非辐射复合。此外,SID可以钝化SnO表面的氧空位和羟基缺陷,促进载流子的分离和提取。这种MLP策略使我们能够基于两步法实现24.47%的功率转换效率(PCE)。此外,未封装的器件在7000小时后,在20°C和30%相对湿度下保持82%的PCE。总体而言,本研究突出了MLP策略在提高PSCs性能方面无与伦比的潜力。