Suppr超能文献

威尔士智力残疾个体多种长期疾病的时间模式:疾病轨迹的无监督聚类方法

Temporal patterns of multiple long-term conditions in individuals with intellectual disability living in Wales: an unsupervised clustering approach to disease trajectories.

作者信息

Kousovista Rania, Cosma Georgina, Abakasanga Emeka, Akbari Ashley, Zaccardi Francesco, Jun Gyuchan Thomas, Kiani Reza, Gangadharan Satheesh

机构信息

Computer Science Department, School of Science, Loughborough University, Loughborough, United Kingdom.

Faculty of Medicine, Health and Life Science, Swansea University, Swansea, United Kingdom.

出版信息

Front Digit Health. 2025 Mar 27;7:1528882. doi: 10.3389/fdgth.2025.1528882. eCollection 2025.

Abstract

INTRODUCTION

Identifying and understanding the co-occurrence of multiple long-term conditions (MLTCs) in individuals with intellectual disability (ID) is crucial for effective healthcare management. Individuals with ID often experience earlier onset and higher prevalence of MLTCs compared to the general population, however, the specific patterns of co-occurrence and temporal progression of these conditions remain largely unexplored. This study presents an innovative unsupervised approach for examining and characterising clusters of MLTC in individuals with ID, based on their shared disease trajectories.

METHODS

Using a dataset of electronic health records (EHRs) from 13,069 individuals with ID, encompassing primary and secondary care data in Wales from 2000 to 2021, this study analysed the time sequences of disease diagnoses. Significant pairwise disease associations were identified, and their temporal directionality assessed. Subsequently, an unsupervised clustering algorithm-spectral clustering-was applied to the shared disease trajectories, grouping them based on common temporal patterns.

RESULTS

The study population comprised 52.3% males and 47.7% females, with a mean of 4.5 3 long-term conditions (LTCs) per patient. Distinct MLTC clusters were identified in both males and females, stratified by age groups (<45 and 45 years). For males under 45, a single cluster dominated by neurological conditions (32.4%), while three clusters were identified for older males, with the largest characterised by circulatory (51.8%). In females under 45, one cluster was found with digestive system conditions (24.6%) being most prevalent. For females 45 years, two clusters were identified: the first cluster was predominantly defined by circulatory (34.1%), while the second cluster by digestive (25.9%) and musculoskeletal (21.9%) system conditions. Mental illness, epilepsy, and reflux disorders were prevalent across all groups.

DISCUSSION

This study reveals complex multimorbidity patterns in individuals with ID, highlighting age and sex differences. The identified clusters provide new insights into disease progression and co-occurrence in this population. These findings can inform the development of targeted interventions and risk stratification strategies, potentially improving personalised healthcare for individuals with ID and MLTCs with the aim of improving health outcome for this vulnerable group of patients i.e. reducing frequency and length of hospital admissions and premature mortality.

摘要

引言

识别并理解智力残疾(ID)个体中多种长期病症(MLTCs)的共现情况对于有效的医疗管理至关重要。与一般人群相比,ID个体中MLTCs往往发病更早且患病率更高,然而,这些病症的具体共现模式和时间进程在很大程度上仍未得到探索。本研究基于ID个体的共同疾病轨迹,提出了一种创新的无监督方法来检查和表征MLTCs集群。

方法

本研究使用了来自13069名ID个体的电子健康记录(EHRs)数据集,涵盖了2000年至2021年威尔士的初级和二级护理数据,分析了疾病诊断的时间序列。确定了显著的成对疾病关联,并评估了它们的时间方向性。随后,将一种无监督聚类算法——谱聚类——应用于共同的疾病轨迹,根据共同的时间模式对其进行分组。

结果

研究人群中男性占52.3%,女性占47.7%,每位患者平均有4.5±3种长期病症(LTCs)。在男性和女性中均识别出了不同的MLTCs集群,并按年龄组(<45岁和≥45岁)分层。对于45岁以下的男性,一个以神经系统疾病为主导的集群(32.4%),而对于年龄较大的男性则识别出三个集群,其中最大的集群以循环系统疾病为特征(51.8%)。在45岁以下的女性中,发现了一个以消化系统疾病最为普遍的集群(24.6%)。对于≥45岁的女性,识别出两个集群:第一个集群主要由循环系统疾病定义(34.1%),而第二个集群由消化系统(25.9%)和肌肉骨骼系统(21.9%)疾病定义。精神疾病、癫痫和反流性疾病在所有组中都很普遍。

讨论

本研究揭示了ID个体中复杂的多重疾病模式,突出了年龄和性别差异。所识别的集群为该人群的疾病进展和共现情况提供了新的见解。这些发现可为有针对性的干预措施和风险分层策略的制定提供信息,有可能改善ID和MLTCs个体的个性化医疗,以改善这一弱势群体患者的健康结局,即减少住院频率和时长以及过早死亡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验