Xian He, Song Yaping, Qu Jingjing, Shi Yiru, Zhang Yue, Wu Weixi, Kim Minjun, Wang Yue, Yu Chengzhong
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
Nano Lett. 2025 Apr 23;25(16):6365-6373. doi: 10.1021/acs.nanolett.4c05615. Epub 2025 Apr 11.
Messenger RNA (mRNA) technology has attracted wide attention in biomedical applications; its success relies heavily on the development of effective delivery tools. Herein, we report the synthesis of a novel CaClOH-modified silica nanoparticle (SNP-CaClOH) with a spiky surface for mRNA delivery. SNP-CaClOH is obtained by a rationally designed thermal decomposition process of hydrated CaCl inside the silanol-rich mesopores of preformed spiky SNPs. When used as a carrier for the cellular delivery of mRNA, the unique composition of CaClOH offers alkalinity to SNP-CaClOH that promotes endosomal escape via the proton sponge effect. Moreover, SNP-CaClOH leads to an increased intracellular Ca level to activate the mammalian target of rapamycin complex 1 (mTORC1) by interacting with calmodulin (CaM) for enhanced mRNA translation. Taking further advantage of the spiky nanotopography, the superior mRNA delivery performance of SNP-CaClOH is demonstrated both and , providing useful delivery tools for mRNA technology development.
信使核糖核酸(mRNA)技术在生物医学应用中备受关注;其成功在很大程度上依赖于有效的递送工具的开发。在此,我们报告了一种用于mRNA递送的具有刺状表面的新型氯化钙修饰二氧化硅纳米颗粒(SNP-CaClOH)的合成。SNP-CaClOH是通过在预先形成的刺状SNP的富含硅醇的介孔内对水合氯化钙进行合理设计的热分解过程获得的。当用作mRNA细胞递送的载体时,CaClOH的独特组成赋予SNP-CaClOH碱性,通过质子海绵效应促进内体逃逸。此外,SNP-CaClOH通过与钙调蛋白(CaM)相互作用导致细胞内钙水平升高,从而激活雷帕霉素复合物1(mTORC1)的哺乳动物靶点以增强mRNA翻译。进一步利用刺状纳米拓扑结构,在体外和体内均证明了SNP-CaClOH卓越的mRNA递送性能,为mRNA技术发展提供了有用的递送工具。