Suppr超能文献

基于共价有机框架的传质

Mass Transport Based on Covalent Organic Frameworks.

作者信息

Yang Jianwei, Wang Bo, Feng Xiao

机构信息

Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

出版信息

Acc Chem Res. 2025 May 6;58(9):1447-1460. doi: 10.1021/acs.accounts.5c00086. Epub 2025 Apr 11.

Abstract

ConspectusMass transport is fundamental to biological systems and industrial processes, governing chemical reactions, substance exchange, and energy conversion across various material scales. In biological systems, ion transport, such as proton migration through voltage-gated proton channels, regulates cellular potential, signaling, and metabolic balance. In industrial processes, transporting molecules through solid, liquid, or gas phases dictates reactant contact and diffusion rates, directly impacting reaction efficiency and conversion. Optimizing these processes necessitates the design of efficient interfaces or channels to enhance mass transport.Crystalline porous materials, particularly covalent organic frameworks (COFs), offer an excellent platform for investigating and optimizing mass transport. With ordered, pre-engineered nano- or subnanometer pores, COFs enable confined substance transport and garnered significant attention for energy conversion, catalysis, drug delivery, adsorption, and separation applications. Deeper investigations into the mass transport mechanism in COFs at the molecular level are crucial for advancing materials science, chemistry, and chemical engineering.Our group focuses on COFs to explore multisubstance cooperative transport mechanisms and structure-activity relationships for ions, water, and gases. We have expanded the linker chemistry of COFs by developing irreversible α-aminoketone-linked COFs and introducing the irreversible Suzuki coupling reaction into COF preparation. We proposed strategies such as side-chain-induced dipole-facilitated stacking and prenucleation and slow growth to achieve record large pore sizes and highly oriented nanochannels. We implemented exfoliation and an interwoven strategy to accelerate ion transport at complex interfaces, refined gas permeability in molecular sieve-based membranes through precise pore size engineering, and elucidated the effects of pore size and hydrophobicity/hydrophilicity on water phase transition and diffusion. Building on these insights, we designed novel open framework ionomers to tailor the microenvironment of electrocatalytic interfaces and uncovered multiple substance transport mechanisms. The synergistically enhanced transport of ions, water, and gas across three-phase interfaces effectively modulates the electrochemical CO reduction reaction pathway and significantly boosts the power density of proton-exchange membrane fuel cells (PEMFCs).In this Account, we summarize recent advances in COF-based ion and molecular transport, emphasizing nanochannel construction strategies, including linkage, pore size, orientation, and function gradient modulations. We discuss the functional design of COFs, correlations between pore structure and transport properties, and their applications in gas separation, energy storage, and catalysis. Finally, we outline current challenges and future opportunities in synthetic chemistry, mass transport mechanisms, and applications. By understanding mass transport phenomena from microscopic particles to macroscopic scales, this Account aims to provide molecular design strategies for optimizing multisubstance transport across three-phase interfaces, aligning mass transport with reaction processes and offering insights to enhance catalytic efficiency and energy conversion performance.

摘要

综述

质量传输对于生物系统和工业过程至关重要,它控制着跨各种物质尺度的化学反应、物质交换和能量转换。在生物系统中,离子传输,如质子通过电压门控质子通道的迁移,调节细胞电位、信号传导和代谢平衡。在工业过程中,分子通过固相、液相或气相的传输决定了反应物的接触和扩散速率,直接影响反应效率和转化率。优化这些过程需要设计高效的界面或通道以增强质量传输。

晶体多孔材料,特别是共价有机框架(COF),为研究和优化质量传输提供了一个极好的平台。由于具有有序的、预先设计的纳米或亚纳米孔,COF能够实现受限物质传输,并在能量转换、催化、药物递送、吸附和分离应用中受到了广泛关注。在分子水平上对COF中质量传输机制进行更深入的研究对于推动材料科学、化学和化学工程的发展至关重要。

我们团队专注于COF,以探索离子、水和气体的多物质协同传输机制以及结构 - 活性关系。我们通过开发不可逆的α - 氨基酮连接的COF并将不可逆的铃木偶联反应引入COF制备中,扩展了COF的连接体化学。我们提出了诸如侧链诱导偶极促进堆积以及预成核和缓慢生长等策略,以实现创纪录的大孔径和高度取向的纳米通道。我们实施了剥离和交织策略以加速复杂界面处的离子传输,通过精确的孔径工程优化了基于分子筛的膜中的气体渗透性,并阐明了孔径和疏水性/亲水性对水相转变和扩散的影响。基于这些见解,我们设计了新型开放框架离聚物来定制电催化界面的微环境,并揭示了多种物质传输机制。离子、水和气体在三相界面上协同增强的传输有效地调节了电化学CO还原反应途径,并显著提高了质子交换膜燃料电池(PEMFC)的功率密度。

在本综述中,我们总结了基于COF的离子和分子传输的最新进展,重点强调了纳米通道构建策略,包括连接、孔径、取向和功能梯度调制。我们讨论了COF的功能设计、孔结构与传输性质之间的相关性及其在气体分离、能量存储和催化中的应用。最后,我们概述了合成化学、质量传输机制和应用方面当前面临的挑战和未来机遇。通过理解从微观粒子到宏观尺度的质量传输现象,本综述旨在提供分子设计策略,以优化跨三相界面的多物质传输,使质量传输与反应过程相匹配,并为提高催化效率和能量转换性能提供见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验