Fabregat-Palau Joel, Ershadi Amirhossein, Finkel Michael, Rigol Anna, Vidal Miquel, Grathwohl Peter
Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany.
Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.
Environ Sci Technol. 2025 Apr 22;59(15):7678-7687. doi: 10.1021/acs.est.4c13284. Epub 2025 Apr 11.
In this study, we introduce PFASorptionML, a novel machine learning (ML) tool developed to predict solid-liquid distribution coefficients () for per- and polyfluoroalkyl substances (PFAS) in soils. Leveraging a data set of 1,274 entries for PFAS in soils and sediments, including compounds such as trifluoroacetate, cationic, and zwitterionic PFAS, and neutral fluorotelomer alcohols, the model incorporates PFAS-specific properties such as molecular weight, hydrophobicity, and p, alongside soil characteristics like pH, texture, organic carbon content, and cation exchange capacity. Sensitivity analysis reveals that molecular weight, hydrophobicity, and organic carbon content are the most significant factors influencing sorption behavior, while charge density and mineral soil fraction have comparatively minor effects. The model demonstrates high predictive performance, with RPD values exceeding 3.16 across validation data sets, outperforming existing tools in accuracy and scope. Notably, PFAS chain length and functional group variability significantly influence , with longer chain lengths and higher hydrophobicity positively correlating with . By integrating location-specific soil repository data, the model enables the generation of spatial maps for selected PFAS species. These capabilities are implemented in the online platform PFASorptionML, providing researchers and practitioners with a valuable resource for conducting environmental risk assessments of PFAS contamination in soils.
在本研究中,我们介绍了PFASorptionML,这是一种新开发的机器学习(ML)工具,用于预测土壤中全氟和多氟烷基物质(PFAS)的固液分配系数( )。该模型利用了包含1274条土壤和沉积物中PFAS数据的数据集,其中包括三氟乙酸盐、阳离子型和两性离子型PFAS以及中性氟调聚物醇等化合物,并纳入了PFAS的特定属性,如分子量、疏水性和p,以及土壤特性,如pH值、质地、有机碳含量和阳离子交换容量。敏感性分析表明,分子量、疏水性和有机碳含量是影响吸附行为的最重要因素,而电荷密度和矿质土壤组分的影响相对较小。该模型具有较高的预测性能,在验证数据集中RPD值超过3.16,在准确性和范围方面优于现有工具。值得注意的是,PFAS链长和官能团变异性对 有显著影响,链长越长、疏水性越高,与 的正相关性越强。通过整合特定地点的土壤储存库数据,该模型能够生成选定PFAS物种的空间 地图。这些功能在在线平台PFASorptionML中实现,为研究人员和从业人员提供了一个有价值的资源,用于对土壤中PFAS污染进行环境风险评估。