文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Mechanism of dracorhodin in accelerating diabetic foot ulcer healing via the Nrf2 pathway, a network pharmacology, molecular docking and experimental validation.

作者信息

Tang Guangjun, Wang Ying, Deng Pin, Wu Junde, Lu Zhongwen, Zhu Ruizheng, Guo Hui, Zhang Yunhui, Mo Xingjie, Chen Zhaojun

机构信息

Beijing University of Chinese Medicine, Beijing, China.

Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China.

出版信息

Sci Rep. 2025 Apr 11;15(1):12492. doi: 10.1038/s41598-025-97831-5.


DOI:10.1038/s41598-025-97831-5
PMID:40216975
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11992152/
Abstract

Delayed wound healing in diabetic foot ulcer (DFU) is a major cause of amputations, with ferroptosis impeding recovery. Dracorhodin (DP), a flavonoid from Dragon's Blood, has shown anti-inflammatory and wound-healing properties, though its molecular mechanisms is unclear. This study investigates DP's role in DFU treatment through bioinformatics and experimental approaches. A rat model of DFU was created with a high-fat/high-glucose diet and streptozotocin (STZ) induction, and wound healing was monitored after applying varying DP doses. Histopathological analysis and ELISA assessed tissue changes, inflammatory markers, and growth factors. Network pharmacology and molecular docking were used to identify core targets and pathways, while human umbilical vein endothelial cells (HUVECs) were used for in vitro testing. The results demonstrated that DP accelerated wound healing in DFU rats in a dose-dependent manner by enhancing collagen synthesis, angiogenesis, and growth factor levels, while simultaneously reducing inflammation and ROS levels. Network pharmacology and molecular docking analyses identified the Nrf2-mediated ferroptosis pathway as a potential key mechanism underlying DP's therapeutic effects in DFU. In vitro experiments further revealed that DP improved cell viability and migration, while decreasing ROS and lipid peroxidation levels, effects attributed to Nrf2 pathway activation. These outcomes were significantly attenuated by the Nrf2 inhibitor ML385. In conclusion, DP promotes DFU healing via activation of the Nrf2 pathway and inhibition of ferroptosis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/12233c640f1a/41598_2025_97831_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/3443a1eb05f8/41598_2025_97831_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/67f8e0d8a368/41598_2025_97831_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/0182bcb38f93/41598_2025_97831_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/d05ab77cde6b/41598_2025_97831_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/1ebb41d6492f/41598_2025_97831_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/c4722116ce0c/41598_2025_97831_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/1bf48c3546e3/41598_2025_97831_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/12233c640f1a/41598_2025_97831_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/3443a1eb05f8/41598_2025_97831_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/67f8e0d8a368/41598_2025_97831_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/0182bcb38f93/41598_2025_97831_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/d05ab77cde6b/41598_2025_97831_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/1ebb41d6492f/41598_2025_97831_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/c4722116ce0c/41598_2025_97831_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/1bf48c3546e3/41598_2025_97831_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ea/11992152/12233c640f1a/41598_2025_97831_Fig8_HTML.jpg

相似文献

[1]
Mechanism of dracorhodin in accelerating diabetic foot ulcer healing via the Nrf2 pathway, a network pharmacology, molecular docking and experimental validation.

Sci Rep. 2025-4-11

[2]
Paeoniflorin accelerates foot wound healing in diabetic rats though activating the Nrf2 pathway.

Acta Histochem. 2020-12

[3]
Bone marrow stromal cell-derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2-related factor 2 pathway and inhibiting ferroptosis.

Diabet Med. 2023-7

[4]
Study on the mechanism of activating SIRT1/Nrf2/p62 pathway to mediate autophagy-dependent ferroptosis to promote healing of diabetic foot ulcers.

Naunyn Schmiedebergs Arch Pharmacol. 2025-3

[5]
Resveratrol promotes diabetic wound healing by inhibiting ferroptosis in vascular endothelial cells.

Burns. 2024-12

[6]
Combined metabolomics and network pharmacology to elucidate the mechanisms of Dracorhodin Perchlorate in treating diabetic foot ulcer rats.

Front Pharmacol. 2022-11-18

[7]
Gynura divaricata (L.) DC. promotes diabetic wound healing by activating Nrf2 signaling in diabetic rats.

J Ethnopharmacol. 2024-4-6

[8]
Sesamol-Loaded PLGA Nanosuspension for Accelerating Wound Healing in Diabetic Foot Ulcer in Rats.

Int J Nanomedicine. 2020-11-23

[9]
Dang-Gui-Si-Ni decoction facilitates wound healing in diabetic foot ulcers by regulating expression of AGEs/RAGE/TGF-β/Smad2/3.

Arch Dermatol Res. 2024-6-7

[10]
Antioxidative and Angiogenesis-Promoting Effects of Tetrahedral Framework Nucleic Acids in Diabetic Wound Healing with Activation of the Akt/Nrf2/HO-1 Pathway.

ACS Appl Mater Interfaces. 2020-2-28

引用本文的文献

[1]
Understanding risk factors and prognosis in diabetic foot ulcers.

Open Life Sci. 2025-8-8

[2]
Revealing the Multi-Target Mechanisms of Fespixon Cream in Diabetic Foot Ulcer Healing: Integrated Network Pharmacology, Molecular Docking, and Clinical RT-qPCR Validation.

Curr Issues Mol Biol. 2025-6-25

本文引用的文献

[1]
Integrating Network Pharmacology, Molecular Docking and Experimental Validation to Explore the Pharmacological Mechanisms of Quercetin Against Diabetic Wound.

Int J Med Sci. 2024

[2]
KEGG: biological systems database as a model of the real world.

Nucleic Acids Res. 2025-1-6

[3]
IDO1 Inhibitor RY103 Suppresses Trp-GCN2-Mediated Angiogenesis and Counters Immunosuppression in Glioblastoma.

Pharmaceutics. 2024-6-28

[4]
Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions.

Int Immunopharmacol. 2024-9-30

[5]
Phytoconstituents as modulators of NF-κB signalling: Investigating therapeutic potential for diabetic wound healing.

Biomed Pharmacother. 2024-8

[6]
Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds.

Nat Nanotechnol. 2024-8

[7]
Hypoglycemic effects of dracorhodin and dragon blood crude extract from Daemonorops draco.

Bot Stud. 2024-3-6

[8]
Programmed microalgae-gel promotes chronic wound healing in diabetes.

Nat Commun. 2024-2-3

[9]
Gynura divaricata (L.) DC. promotes diabetic wound healing by activating Nrf2 signaling in diabetic rats.

J Ethnopharmacol. 2024-4-6

[10]
WHS (Wound Healing Society) guidelines update: Diabetic foot ulcer treatment guidelines.

Wound Repair Regen. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索