Zehetner L, Széliová D, Kraus B, Hernandez Bort J A, Zanghellini J
Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria; Doctoral School of Chemistry, University of Vienna, Vienna, 1090, Austria.
Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
Metab Eng. 2025 Sep;91:103-118. doi: 10.1016/j.ymben.2025.03.011. Epub 2025 Apr 11.
HEK293 cells are a versatile cell line extensively used in the production of recombinant proteins and viral vectors, notably Adeno-associated virus (AAV) (Bulcha et al., 2021). Despite their high transfection efficiency and adaptability to various culture conditions, challenges remain in achieving sufficient yields of active viral particles. This study presents a comprehensive multi-omics analysis of two HEK293 strains under good manufacturing practice conditions, focusing on the metabolic and cellular responses during AAV production. The investigation included lipidomic, exometabolomic, and transcriptomic profiling across different conditions and time points. Genome-scale metabolic models (GSMMs) were reconstructed for these strains to elucidate metabolic shifts and identify potential bottlenecks in AAV production. Notably, the study revealed significant differences between a High-producing (HP) and a Low-producing (LP) HEK293 strains, highlighting pseudohypoxia in the LP strain. Key findings include the identification of hypoxia-inducible factor 1-alpha (HIF-1α) as a critical regulator in the LP strain, linking pseudohypoxia to poor AAV productivity. Inhibition of HIF-1α resulted in immediate cessation of cell growth and a 2.5-fold increase in viral capsid production, albeit with a decreased number of viral genomes, impacting the full-to-empty particle ratio. This trade-off is significant because it highlights a key challenge in AAV production: achieving a balance between capsid assembly and genome packaging to optimize the yield of functional viral vectors. Overall this suggests that while HIF-1α inhibition enhances capsid assembly, it simultaneously hampers nucleotide synthesis via the pentose phosphate pathway (PPP), necessary for nucleotide synthesis, and therefore for AAV genome replication.
人胚肾293(HEK293)细胞是一种用途广泛的细胞系,广泛应用于重组蛋白和病毒载体的生产,尤其是腺相关病毒(AAV)(布尔查等人,2021年)。尽管它们具有高转染效率且能适应各种培养条件,但在获得足够产量的活性病毒颗粒方面仍存在挑战。本研究对两种HEK293菌株在良好生产规范条件下进行了全面的多组学分析,重点关注AAV生产过程中的代谢和细胞反应。研究包括在不同条件和时间点进行脂质组学、胞外代谢组学和转录组学分析。为这些菌株重建了基因组规模的代谢模型(GSMMs),以阐明代谢变化并识别AAV生产中的潜在瓶颈。值得注意的是,该研究揭示了高产(HP)和低产(LP)HEK293菌株之间的显著差异,突出了LP菌株中的假性缺氧。主要发现包括确定缺氧诱导因子1α(HIF-1α)是LP菌株中的关键调节因子,将假性缺氧与AAV生产力低下联系起来。抑制HIF-1α导致细胞生长立即停止,病毒衣壳产量增加2.5倍,尽管病毒基因组数量减少,影响了全病毒颗粒与空病毒颗粒的比例。这种权衡很重要,因为它突出了AAV生产中的一个关键挑战:在衣壳组装和基因组包装之间取得平衡,以优化功能性病毒载体的产量。总体而言,这表明虽然抑制HIF-1α可增强衣壳组装,但同时会通过磷酸戊糖途径(PPP)阻碍核苷酸合成,而核苷酸合成是核苷酸合成所必需的,因此也是AAV基因组复制所必需的。