Suppr超能文献

整合正电子发射断层扫描/计算机断层扫描特征的机器学习算法,用于预测肺癌新辅助化疗免疫治疗后的病理完全缓解。

Machine learning algorithms integrating positron emission tomography/computed tomography features to predict pathological complete response after neoadjuvant chemoimmunotherapy in lung cancer.

作者信息

Sheng Zhenxin, Ji Shuyu, Chen Yancheng, Mi Zirong, Yu Huansha, Zhang Lele, Wan Shiyue, Song Nan, Shen Ziyun, Zhang Peng

机构信息

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.

Information Service Department, Orient Overseas Container Line Limited, Shanghai, China.

出版信息

Eur J Cardiothorac Surg. 2025 May 6;67(5). doi: 10.1093/ejcts/ezaf132.

Abstract

OBJECTIVES

Reliable methods for predicting pathological complete response (pCR) in non-small cell lung cancer (NSCLC) patients undergoing neoadjuvant chemoimmunotherapy are still under exploration. Although Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) features reflect tumour response, their utility in predicting pCR remains controversial.

METHODS

This retrospective analysis included NSCLC patients who received neoadjuvant chemoimmunotherapy followed by 18F-FDG PET/CT imaging at Shanghai Pulmonary Hospital from October 2019 to August 2024. Eligible patients were randomly divided into training and validation cohort at a 7:3 ratio. Relevant 18F-FDG PET/CT features were evaluated as individual predictors and incorporated into 5 machine learning (ML) models. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), and Shapley additive explanation was applied for model interpretation.

RESULTS

A total of 205 patients were included, with 91 (44.4%) achieving pCR. Post-treatment tumour maximum standardized uptake value (SUVmax) demonstrated the highest predictive performance among individual predictors, achieving an AUC of 0.72 (95% CI 0.65-0.79), while ΔT SUVmax achieved an AUC of 0.65 (95% CI 0.53-0.77). The Light Gradient Boosting Machine algorithm outperformed other models and individual predictors, achieving an average AUC of 0.87 (95% CI 0.78-0.97) in training cohort and 0.83 (95% CI 0.72-0.94) in validation cohort. Shapley additive explanation analysis identified post-treatment tumour SUVmax and post-treatment nodal volume as key contributors.

CONCLUSIONS

This ML models offer a non-invasive and effective approach for predicting pCR after neoadjuvant chemoimmunotherapy in NSCLC.

摘要

目的

预测接受新辅助化疗免疫治疗的非小细胞肺癌(NSCLC)患者病理完全缓解(pCR)的可靠方法仍在探索中。尽管氟-18氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(18F-FDG PET/CT)特征反映了肿瘤反应,但其在预测pCR方面的效用仍存在争议。

方法

这项回顾性分析纳入了2019年10月至2024年8月在上海肺科医院接受新辅助化疗免疫治疗并随后进行18F-FDG PET/CT成像的NSCLC患者。符合条件的患者按7:3的比例随机分为训练队列和验证队列。将相关的18F-FDG PET/CT特征评估为个体预测指标,并纳入5种机器学习(ML)模型。使用受试者操作特征曲线下面积(AUC)评估模型性能,并应用Shapley加性解释进行模型解释。

结果

共纳入205例患者,其中91例(44.4%)达到pCR。治疗后肿瘤最大标准化摄取值(SUVmax)在个体预测指标中表现出最高的预测性能,AUC为0.72(95%CI 0.65-0.79),而ΔT SUVmax的AUC为0.65(95%CI 0.53-0.77)。轻梯度提升机算法优于其他模型和个体预测指标,在训练队列中的平均AUC为0.87(95%CI 0.78-0.97),在验证队列中的平均AUC为0.83(95%CI 0.72-0.94)。Shapley加性解释分析确定治疗后肿瘤SUVmax和治疗后淋巴结体积为关键因素。

结论

这种ML模型为预测NSCLC新辅助化疗免疫治疗后的pCR提供了一种非侵入性的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验