Suppr超能文献

阿尔茨海默病研究中的单指标测量误差跳跃回归模型

Single-Index Measurement Error Jump Regression Model in Alzheimer's Disease Studies.

作者信息

Zhao Yan-Yong, Lei Kaizhou, Liu Yuan, Tan Yuanyao, Ismail Noriszura, Ridzuan Mohd Tajuddin Razik, Liu Rongjie, Huang Chao

机构信息

School of Statistics and Data Science, Nanjing Audit University, Nanjing, China.

Department of Statistics, Florida State University, Tallahassee, Florida, USA.

出版信息

Stat Med. 2025 Mar 30;44(7):e70081. doi: 10.1002/sim.70081.

Abstract

Alzheimer's disease (AD) is the major cause of dementia in the elderly, and investigations on the impact of risk factors on neurocognitive performance are crucial in preventative treatment. While existing statistical regression models, such as single-index models, have proven effective tools for uncovering the relationship between the neurocognitive scores and covariates of interest such as demographic information, clinical variables, and neuroimaging features, limited research has explored scenarios where jump discontinuities exist in the regression patterns and the covariates are unobservable but measured with errors, which are common in real applications. To address these challenges, we propose a single-index measurement error jump regression model (SMEJRM) that can handle both jump discontinuities and measurement errors in image covariates introduced by different image processing software. This development is motivated by data from 168 patients in the Alzheimer's Disease Neuroimaging Initiative. We establish both the estimation procedure and the corresponding asymptotic results. Simulation studies are conducted to evaluate the finite sample performance of our SMEJRM and the estimation procedure. The real application reveals that jump discontinuities do exist in the relationship between neurocognitive scores and some covariates of interest in this study.

摘要

阿尔茨海默病(AD)是老年人痴呆的主要病因,研究风险因素对神经认知表现的影响对于预防性治疗至关重要。虽然现有的统计回归模型,如单指标模型,已被证明是揭示神经认知分数与诸如人口统计学信息、临床变量和神经影像学特征等感兴趣的协变量之间关系的有效工具,但有限的研究探讨了回归模式中存在跳跃间断且协变量不可观测但存在测量误差的情况,而这种情况在实际应用中很常见。为应对这些挑战,我们提出了一种单指标测量误差跳跃回归模型(SMEJRM),该模型可以处理不同图像处理软件引入的图像协变量中的跳跃间断和测量误差。这一进展是由阿尔茨海默病神经影像学计划中168名患者的数据推动的。我们建立了估计程序和相应的渐近结果。进行了模拟研究以评估我们的SMEJRM和估计程序的有限样本性能。实际应用表明,在本研究中神经认知分数与一些感兴趣的协变量之间的关系确实存在跳跃间断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验