Suppr超能文献

模拟新型冠状病毒2感染动力学:对病毒清除和免疫协同作用的见解

Modeling SARS-CoV-2 Infection Dynamics: Insights into Viral Clearance and Immune Synergy.

作者信息

Fan Lele, Qiu Zhipeng, Deng Qi, Guo Ting, Rong Libin

机构信息

School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.

Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, M3J1P0, Canada.

出版信息

Bull Math Biol. 2025 Apr 15;87(6):67. doi: 10.1007/s11538-025-01442-0.

Abstract

Understanding the mechanisms of interaction between SARS-CoV-2 infection and the immune system is crucial for developing effective treatment strategies against COVID-19. In this paper, a mathematical model is formulated to investigate the interactions among SARS-CoV-2 infection, cellular immunity, and humoral immunity. Clinical data from eight asymptomatic or mild COVID-19 patients in Munich are used to fit the model, and the dynamics of natural killer (NK) cells, cytotoxic T lymphocytes (CTLs), B cells, and antibodies are further explored using the average of the best-fitting parameter values. Subsequently, the impact of NK cells, CTLs, B cells, and antibodies on SARS-CoV-2 infection is numerically investigated. The results indicate that (i) the synergy of NK cells, CTLs, and antibodies leads to a rapid decrease in the viral load during SARS-CoV-2 infection; (ii) antibodies play a crucial role compared to other immune mechanisms, and enhancing B cell stimulation may be more effective in clearing the virus from the lungs; (iii) in terms of cytotoxic effects, CTLs are stronger and more sustained than NK cells. Furthermore, the existence and local stability of the model's equilibria are fully classified, and complex dynamics of the model are further investigated using bifurcation theory, revealing multistability phenomena, including multiple attractors and periodic solutions. These findings suggest potential uncertainty and diversity in SARS-CoV-2 infection outcomes.

摘要

了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染与免疫系统之间的相互作用机制对于制定有效的抗2019冠状病毒病(COVID-19)治疗策略至关重要。在本文中,建立了一个数学模型来研究SARS-CoV-2感染、细胞免疫和体液免疫之间的相互作用。利用慕尼黑8例无症状或轻症COVID-19患者的临床数据对模型进行拟合,并使用最佳拟合参数值的平均值进一步探索自然杀伤(NK)细胞、细胞毒性T淋巴细胞(CTL)、B细胞和抗体的动态变化。随后,对NK细胞、CTL、B细胞和抗体对SARS-CoV-2感染的影响进行了数值研究。结果表明:(i)NK细胞、CTL和抗体的协同作用导致SARS-CoV-2感染期间病毒载量迅速下降;(ii)与其他免疫机制相比,抗体起着关键作用,增强B细胞刺激可能在从肺部清除病毒方面更有效;(iii)在细胞毒性作用方面,CTL比NK细胞更强且更持久。此外,对模型平衡点的存在性和局部稳定性进行了全面分类,并利用分岔理论进一步研究了模型的复杂动力学,揭示了多稳定性现象,包括多个吸引子和周期解。这些发现表明SARS-CoV-2感染结果存在潜在的不确定性和多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验