Beck Moritz, Koll Carolin, Dumpis Uga, Giske Christian G, Göpel Siri, Jørgensen Silje Bakken, Kessel Johanna, Kleppe Lars Kaare, Oma Dorthea Hagen, Raz Noa Eliakim, Semret Makeda, Simonsen Gunnar Skov, Vehreschild Maria J G T, Albus Kerstin, Biehl Lena M, Vehreschild Jörg J, Classen Annika Y
Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
Department of Urology, Hospital of Leverkusen, Leverkusen, Germany.
Infection. 2025 Apr 15. doi: 10.1007/s15010-025-02525-9.
Identifying patients for clinical studies evaluating strategies to reduce unnecessary antibiotic usage in hospitals is challenging. This study aimed to develop a predictive score to identify newly hospitalized patients with high likelihood of receiving antibiotics, thus improving patient inclusion in future studies focusing on antimicrobial stewardship (AMS) programs.
This retrospective analysis used data from the PILGRIM study (NCT03765528), which included 1,600 patients across ten international sites. Predictive variables for antibiotic treatment during hospitalization were computed, and an additive score model was developed using logistic regression and 10-fold cross-validation. The PILGRIM score was validated in an independent cohort (validation cohort), with performance metrics assessed.
Data from 1,258 patients was included. In the development cohort 52.8% (n = 445) and in the validation cohort 42.4% (n = 134) of patients received antibiotics. Key predictors included hematologic malignancies, immunosuppressive medication, and past hospitalization. The logistic regression model demonstrated an area under the curve of 0.74 in the validation. The final additive score incorporated these predictors plus "planned elective surgery" achieving a specificity of 92%, a positive predictive value of 78%, a sensitivity of 41%, and a negative predictive value (NPV) of 69%in validation set.
The PILGRIM score effectively identifies newly hospitalized patients likely to receive antibiotics, demonstrating high specificity and PPV. Its application can improve future AMS programs and trial recruitment by facilitating targeted inclusion of patients, especially in the hematological and oncological setting. Further -external and prospective- validation is needed to broaden the model's applicability.
为评估医院减少不必要抗生素使用策略的临床研究确定患者具有挑战性。本研究旨在开发一种预测评分,以识别新入院且接受抗生素治疗可能性高的患者,从而提高未来专注于抗菌药物管理(AMS)计划研究中的患者纳入率。
这项回顾性分析使用了PILGRIM研究(NCT03765528)的数据,该研究涵盖了十个国际地点的1600名患者。计算住院期间抗生素治疗的预测变量,并使用逻辑回归和10倍交叉验证开发一个累加评分模型。在一个独立队列(验证队列)中对PILGRIM评分进行验证,并评估性能指标。
纳入了1258名患者的数据。在开发队列中,52.8%(n = 445)的患者接受了抗生素治疗,在验证队列中这一比例为42.4%(n = 134)。关键预测因素包括血液系统恶性肿瘤、免疫抑制药物和既往住院史。逻辑回归模型在验证中的曲线下面积为0.74。最终的累加评分纳入了这些预测因素以及“计划择期手术”,在验证集中特异性达到92%,阳性预测值为78%,敏感性为41%,阴性预测值(NPV)为69%。
PILGRIM评分有效地识别了可能接受抗生素治疗的新入院患者,具有高特异性和阳性预测值。其应用可以通过促进有针对性地纳入患者来改善未来的AMS计划和试验招募,特别是在血液学和肿瘤学环境中。需要进一步的外部和前瞻性验证以扩大该模型的适用性。