利用基于主体的建模和随机干预来促进儿童身体活动:一项研究方案。

Leveraging agent-based modeling and a randomized intervention to advance childhood physical activity: A study protocol.

作者信息

Kasman Matt, Sedlak Adam B, Reader Lydia, Heerman William J, Pate Russell R, Ramirez Amelie G, Sommer Evan C, Barkin Shari L, Hammond Ross A

机构信息

Center on Social Dynamics and Policy, Brookings Institution, Washington, District of Columbia, United States of America.

Department of Mechanical and Aerospace Engineering, University of California San Diego Jacobs School of Engineering, San Diego, California, United States of America.

出版信息

PLoS One. 2025 Apr 15;20(4):e0321301. doi: 10.1371/journal.pone.0321301. eCollection 2025.

Abstract

This study (1R01HD107002-01A1) protocol describes the planned creation and use of an agent-based model (ABM) of early childhood physical activity (PA). Successful early childhood PA interventions can potentially play an important role in both increasing overall population health as well as closing health disparities across subpopulations. At present, effective strategies for doing so are currently unknown. In large part, this is because PA determinants operate across levels dynamically, interact with one another, and can differ substantially across children. A complex systems approach-specifically, ABM-can be used to provide important insights about effect pathways driving child PA. Design of the proposed ABM will be based on high-quality extant research on childhood physical activity while allowing for the testing of hypotheses that extend beyond this body of literature. Its primary source of input data will be participants in GROW (NCT01316653), a completed cohort-based randomized controlled trial (RCT) that includes extensive longitudinal PA data collected from accelerometer observations of children from ages 3-9. We will iteratively test and improve upon an etiologic ABM of childhood PA, ensuring that it can satisfactorily reproduce micro- and macro-level influences and trends comparable to those seen in GROW. The tested ABM will then be used to extrapolate beyond the context of the GROW RCT, experimentally identifying potentially efficacious intervention strategies to improve childhood physical activity through program implementation or changes in policies and practices. We will use expert input to identify promising intervention approaches. We will use the model to systematically experiment with a wide array of different hypothetical combinations of intervention specifications and combinations. At the end of the model experimentation step, we expect to generate insights of broad applicability to the field of PA science regarding what might work, and for whom, in promoting PA and reducing disparities in these behaviors.

摘要

本研究方案(1R01HD107002 - 01A1)描述了基于主体模型(ABM)的幼儿身体活动(PA)的创建计划及使用方法。成功的幼儿期PA干预在提升总体人群健康以及消除亚人群间的健康差异方面可能发挥重要作用。目前,实现这一目标的有效策略尚不清楚。很大程度上,这是因为PA的决定因素在不同层面动态起作用,相互影响,且在不同儿童之间可能存在显著差异。一种复杂系统方法——具体而言,即ABM——可用于提供有关驱动儿童PA的效应途径的重要见解。拟议的ABM设计将基于关于儿童身体活动的高质量现有研究,同时允许对超出该文献范围的假设进行检验。其输入数据的主要来源将是参与GROW研究(NCT01316653)的参与者,这是一项已完成的基于队列的随机对照试验(RCT),其中包括从3至9岁儿童的加速度计观测中收集的广泛纵向PA数据。我们将对儿童PA的病因学ABM进行反复测试和改进,确保它能够令人满意地再现与GROW研究中所见相当的微观和宏观层面的影响及趋势。经过测试的ABM随后将用于推断超出GROW RCT的背景情况,通过实验确定潜在有效的干预策略,以通过项目实施或政策及实践的改变来改善儿童身体活动。我们将利用专家意见来确定有前景的干预方法。我们将使用该模型对各种不同的干预规范和组合的假设组合进行系统实验。在模型实验步骤结束时,我们期望能就促进PA以及减少这些行为差异方面哪些方法可能有效、对谁有效,得出对PA科学领域具有广泛适用性的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6343/11999168/549ff349b143/pone.0321301.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索