Verma Ashwini, Joshi Kavita
Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
iScience. 2025 Mar 20;28(4):112251. doi: 10.1016/j.isci.2025.112251. eCollection 2025 Apr 18.
We present a machine-learning powered etal ydride's ressure-omposition-emperature isotherm edictr for metal compositions. To train the MH-PCTpro, an experimental database of PCT isotherms is built from published literature. The database comprises over 14,000 data points extracted from 237 PCT isotherms representing 138 distinct compositions. The dataset encompasses more than 25 elements and spans a broad spectrum of absorption temperatures (263-653 K) and hydrogen pressures (0.001-40 MPa). The model is validated on a wide range of alloy families and its predictions are consistent with experimental results. The model also captures temperature-dependent variations in plateau pressure, enabling determination of enthalpy and entropy of hydride formation through Van't Hoff plots. Hence, MH-PCTpro can be used as an ML tool for guiding PCT experiments, offering PCT isotherm predictions and valuable thermodynamic insights into materials suitable for solid-state hydrogen storage.
我们展示了一种由机器学习驱动的用于金属成分的金属氢化物压力-成分-温度等温线预测器。为了训练MH-PCTpro,从已发表的文献中构建了一个PCT等温线实验数据库。该数据库包含从237条PCT等温线中提取的超过14000个数据点,代表138种不同的成分。数据集涵盖25种以上元素,涵盖广泛的吸收温度(263 - 653 K)和氢气压力(0.001 - 40 MPa)。该模型在多种合金体系上得到验证,其预测结果与实验结果一致。该模型还捕捉到平台压力随温度的变化,能够通过范特霍夫图确定氢化物形成的焓和熵。因此,MH-PCTpro可作为一种机器学习工具来指导PCT实验,提供PCT等温线预测以及对适用于固态储氢材料的有价值的热力学见解。