Phan L, Miller D, Gopinath A, Lin M, Gunther D, Kiel K, Quintin S, Borg D, Hasanpour-Segherlou Z, Newman A, Sorrentino Z, Miller E J, Seibold J, Hoh B, Giasson B, Khoshbouei H
bioRxiv. 2025 Apr 2:2025.03.24.644952. doi: 10.1101/2025.03.24.644952.
In synucleinopathies, including Parkinson's disease (PD), dopamine neurons in the substantia nigra pars compacta (SNc) exhibit greater vulnerability to degeneration than those in the ventral tegmental area (VTA). While α-synuclein (αSyn) pathology is implicated in nigral dopamine neuron loss, the mechanisms by which αSyn affects neuronal activity and midbrain dopamine network connectivity prior to cell death remain unclear. This study tested the hypothesis that elevated αSyn expression induces pathophysiological changes in firing activity and disrupts network connectivity dynamics of dopamine neurons before neuronal loss. We employed two mouse models of synucleinopathy: preformed αSyn fibril (PFF) injection and AAV-mediated expression of human αSyn (hαSyn) under the control of the tyrosine hydroxylase (TH) promoter, both targeting the VTA and SNc. Four weeks post-injection, brain sections underwent histological, electrophysiological, and network analyses. Immunohistochemistry for TH, hαSyn, and phospho-Ser129 αSyn assessed αSyn expression and dopaminergic neuron alterations. Neuronal viability was evaluated using two complementary approaches: quantification of TH or FOX3 and TUNEL labeling. Importantly, these analyses revealed no significant changes in neuronal counts or TUNEL cells at this time point, confirming that subsequent functional assessments captured pre-neurodegenerative, αSyn-induced alterations rather than late-stage neurodegeneration. Electrophysiological recordings revealed a differential effect of hαSyn expression. SNc dopamine neurons exhibited significantly increased firing rates, whereas VTA dopamine neurons remained unchanged. These findings indicate a region-specific vulnerability to αSyn-induced hyperactivity of dopamine neurons. Further analysis revealed impaired homeostatic firing rate regulation in SNc, but not VTA, dopamine neurons, demonstrated by a reduced capacity to recover baseline firing following hyperpolarization. Collectively, our results demonstrate that, prior to neurodegeneration, elevated αSyn expression differentially disrupts both basal firing activity and network stability of SNc dopamine neurons, while sparing VTA dopamine neurons. By identifying neurophysiological changes preceding dopaminergic neuron loss, these findings provide critical insights into the pathophysiological mechanisms predisposing SNc neurons to degeneration in Parkinson's disease.
A central question in Parkinson's disease research is why dopamine neurons in the substantia nigra pars compacta (SNc) are more vulnerable than those in the ventral tegmental area (VTA). This study reveals that alpha-synuclein (αSyn) pathology differentially impacts dopamine neuronal activity and network connectivity, causing changes in the SNc before neuronal loss occurs, but not in the VTA. These findings provide a mechanism to explain the differential resilience of these neighboring dopamine neuron populations and provide insights into Parkinson's disease progression. The methodologies developed in this study establish a foundation for investigating network topology in deep brain structures and its role in neurodegenerative disorders.
在包括帕金森病(PD)在内的突触核蛋白病中,黑质致密部(SNc)的多巴胺能神经元比腹侧被盖区(VTA)的多巴胺能神经元更容易发生变性。虽然α-突触核蛋白(αSyn)病理与黑质多巴胺能神经元丢失有关,但在细胞死亡之前,αSyn影响神经元活动和中脑多巴胺网络连接性的机制仍不清楚。本研究检验了以下假设:αSyn表达升高会在神经元丢失之前诱导放电活动的病理生理变化,并破坏多巴胺能神经元的网络连接动力学。我们采用了两种突触核蛋白病小鼠模型:预形成的αSyn纤维(PFF)注射以及在酪氨酸羟化酶(TH)启动子控制下通过腺相关病毒(AAV)介导的人αSyn(hαSyn)表达,二者均靶向VTA和SNc。注射后四周,对脑切片进行组织学、电生理学和网络分析。对TH、hαSyn和磷酸化丝氨酸129αSyn进行免疫组织化学检测,以评估αSyn表达和多巴胺能神经元改变。使用两种互补方法评估神经元活力:TH或FOX3定量以及TUNEL标记。重要的是,这些分析在该时间点未发现神经元计数或TUNEL阳性细胞有显著变化,证实后续功能评估捕捉到的是神经退行性变前、αSyn诱导的改变,而非晚期神经退行性变。电生理学记录显示hαSyn表达有不同影响。SNc多巴胺能神经元的放电频率显著增加,而VTA多巴胺能神经元保持不变。这些发现表明多巴胺能神经元对αSyn诱导的活动亢进存在区域特异性易损性。进一步分析显示,SNc而非VTA的多巴胺能神经元的稳态放电频率调节受损,表现为超极化后恢复基线放电的能力降低。总体而言,我们的结果表明,在神经退行性变之前,αSyn表达升高会不同程度地破坏SNc多巴胺能神经元的基础放电活动和网络稳定性,而VTA多巴胺能神经元则不受影响。通过识别多巴胺能神经元丢失之前的神经生理变化,这些发现为帕金森病中使SNc神经元易发生变性的病理生理机制提供了关键见解。
帕金森病研究中的一个核心问题是,为什么黑质致密部(SNc)的多巴胺能神经元比腹侧被盖区(VTA)的多巴胺能神经元更容易受损。本研究表明,α-突触核蛋白(αSyn)病理对多巴胺能神经元活动和网络连接有不同影响,在神经元丢失发生之前导致SNc发生变化,但VTA未受影响。这些发现提供了一种机制,用以解释这些相邻多巴胺能神经元群体的不同恢复力,并为帕金森病的进展提供了见解。本研究中开发的方法为研究深部脑结构中的网络拓扑及其在神经退行性疾病中的作用奠定了基础。