Santini Francesco, Wasserthal Jakob, Agosti Abramo, Deligianni Xeni, Keene Kevin R, Kan Hermien E, Sommer Stefan, Wang Fengdan, Weidensteiner Claudia, Manco Giulia, Paoletti Matteo, Mazzoli Valentina, Desai Arjun, Pichiecchio Anna
Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
Department of Radiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
Radiol Artif Intell. 2025 May;7(3):e240097. doi: 10.1148/ryai.240097.
Purpose To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiologic images through federated incremental learning. Materials and Methods Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed on the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally by assessing the performance gain across model generations on 38 MRI datasets of the lower legs and through the analysis of real-world usage statistics (639 use cases). Results Dafne demonstrated a statistical improvement in the accuracy of semantic segmentation over time (average increase of the Dice similarity coefficient by 0.007 points per generation on the local validation set, < .001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization. Segmentation, Muscular, Open Client-Server Framework © RSNA, 2025.
目的 介绍并评估Dafne(深度解剖联邦网络),这是一个通过联邦增量学习对放射图像进行语义分割的免费可用的去中心化协作深度学习系统。材料与方法 Dafne是具有客户端-服务器架构的免费软件。客户端是一个高级用户界面,它将存储在服务器上的深度学习模型应用于用户数据,并允许用户检查和完善预测结果。然后在客户端进行增量学习,并将其发送回服务器,在服务器上它会被集成到根模型中。通过评估38个小腿MRI数据集上跨模型代的性能提升以及分析实际使用统计数据(639个用例)对Dafne进行了本地评估。结果 Dafne显示随着时间推移语义分割准确性有统计学上的提高(在本地验证集上每一代的Dice相似系数平均增加0.007分,P <.001)。定性地说,这些模型在各种放射图像类型上表现出增强的性能,包括那些不在初始训练集中的图像类型,表明模型具有良好的通用性。结论 Dafne随着时间推移在分割质量上有所提高,展示了学习和泛化的潜力。 分割、肌肉、开放客户端-服务器框架 © RSNA,2025年