结直肠手术中腹膜后肿瘤的整合计算机模拟分析:进展与影响

Integrative In-Silico Analysis of Retroperitoneal Tumors in Colorectal Surgery: Advancements and Implications.

作者信息

Liu Wenqing, Chen Weida, Tang Maosheng, Liu Shibo, Gao Haichen, Miao Chengli

机构信息

Department of Retroperitoneal Tumors &Anorectal Surgery, Peking University International Hospital, Beijing, China.

出版信息

Cell Biochem Biophys. 2025 Apr 16. doi: 10.1007/s12013-025-01733-2.

Abstract

Retroperitoneal tumors pose significant challenges in colorectal surgery due to their complex anatomical location, aggressive behavior, and heterogeneous nature. Traditional diagnostic and treatment methods often fall short in effectively managing these tumors. This study leverages advanced in-silico methodologies to perform a comprehensive analysis of retroperitoneal tumors associated with colorectal conditions. By integrating computational modeling and cutting-edge bioinformatics tools, we aim to enhance the understanding of tumor biology, improve diagnostic precision, and optimize surgical outcomes. Our integrative approach combines transcriptomic, and proteomic data from publicly available databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Transcriptomic analysis reveals differentially expressed genes (DEGs) that serve as potential biomarkers for early diagnosis and prognosis. Proteomic analysis highlights critical protein interaction networks and pathways involved in tumorigenesis and metastasis. Our integrative approach identifies key DEGs and constructs protein-protein interaction (PPI) networks to pinpoint critical regulatory genes, such as VWF, PF4, ITGA2B, CXCL8, and GP9, that may serve as potential biomarkers or therapeutic targets. Functional enrichment analysis reveals significant pathways involved in tumorigenesis, including cell proliferation, immune response, and DNA repair. Additionally, immune cell infiltration analysis using the CIBERSORT algorithm demonstrates an immunosuppressive tumor microenvironment characterized by increased regulatory T cells (Tregs) and M2 macrophages, which could contribute to tumor immune evasion.Future studies should focus on clinical validation of these findings and the expansion of computational models to include diverse patient populations. Through these efforts, we aim to revolutionize the management of retroperitoneal tumors in colorectal surgery, ultimately improving patient care and survival rates.

摘要

由于腹膜后肿瘤解剖位置复杂、行为侵袭性强且性质异质性高,在结直肠手术中构成了重大挑战。传统的诊断和治疗方法在有效处理这些肿瘤方面往往存在不足。本研究利用先进的计算机模拟方法对与结直肠疾病相关的腹膜后肿瘤进行全面分析。通过整合计算建模和前沿的生物信息学工具,我们旨在加深对肿瘤生物学的理解,提高诊断精度,并优化手术效果。我们的综合方法结合了来自诸如癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)等公开可用数据库的转录组和蛋白质组数据。转录组分析揭示了作为早期诊断和预后潜在生物标志物的差异表达基因(DEGs)。蛋白质组分析突出了参与肿瘤发生和转移的关键蛋白质相互作用网络和途径。我们的综合方法识别关键的DEGs并构建蛋白质-蛋白质相互作用(PPI)网络,以确定关键的调控基因,如血管性血友病因子(VWF)、血小板因子4(PF4)、整合素α2β(ITGA2B)、趋化因子(CXCL8)和血小板因子9(GP9),它们可能作为潜在的生物标志物或治疗靶点。功能富集分析揭示了参与肿瘤发生的重要途径,包括细胞增殖、免疫反应和DNA修复。此外,使用CIBERSORT算法进行的免疫细胞浸润分析显示了一种以调节性T细胞(Tregs)和M2巨噬细胞增加为特征的免疫抑制肿瘤微环境,这可能导致肿瘤免疫逃逸。未来的研究应专注于这些发现的临床验证以及将计算模型扩展到包括不同患者群体。通过这些努力,我们旨在彻底改变结直肠手术中腹膜后肿瘤的管理方式,最终改善患者护理和生存率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索