Suppr超能文献

用于预测下肢动脉硬化闭塞症患者手术干预后复发风险的列线图模型的构建与验证

Construction and validation of a nomogram model for predicting the risk of recurrence in patients with lower extremity arteriosclerosis obliterans after surgical intervention.

作者信息

Lu Yanyan, Wang Lingyan, Yu Xiaoxiao, Meng Xiaohu

机构信息

Vascular Surgery, The Fourth School of Clinical Medicine, First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang province, 310006, China.

Vascular Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang province, 310006, China.

出版信息

J Cardiothorac Surg. 2025 Apr 16;20(1):203. doi: 10.1186/s13019-025-03413-x.

Abstract

OBJECTIVE

To explore and analyze the risk factors for recurrence in patients with lower extremity arteriosclerosis obliterans (ASO) after surgical intervention and to construct and validate a nomogram prediction model.

METHODS

A total of 270 patients with ASO treated at our hospital were retrospectively selected as study subjects and divided into a training cohort (189 cases) and a validation cohort (81 cases) based on a 7:3 ratio. Patients in the training cohort were further divided into recurrence and non-recurrence groups based on whether they experienced recurrence within two years post-surgery. Univariate and multivariate logistic regression analyses were employed to identify independent risk factors for postoperative recurrence, which were then used to construct a predictive model and generate a nomogram.

RESULTS

Of the 270 patients with ASO included in the study, the training cohort consisted of 189 patients, with 76 (40.21%) in the recurrence group and 113 (59.79%) in the non-recurrence group. The validation cohort consisted of 81 patients, with 32 (39.51%) in the recurrence group and 49 (60.49%) in the non-recurrence group. Univariate analysis in the training cohort revealed significant differences in age, body mass index (BMI), diabetes, hypertension, lesion location classification, use of antiplatelet drugs, triglycerides, fibrinogen (FIB), and di-dimer (D-D) (P < 0.05, respectively). Multivariate logistic regression analysis indicated that age ≥ 60 years, BMI ≥ 24 kg/m², diabetes, hypertension, discontinuation of antiplatelet therapy, FIB, and D-D were independent risk factors for recurrence after surgical intervention in patients with lower extremity ASO (OR = 2.471, 1.625, 4.568, 2.678, 5.974, 2.073 and 3.067; P < 0.05, respectively). When the training and validation cohorts were tested in the established nomogram model, the area under the curve (AUC) of the model was 0.832 (95% CI: 0.765-0.919) in the training cohort and 0.858 (95% CI: 0.745-0.964) in the validation cohort. Calibration curves indicated high consistency between the predicted and actual outcomes in both groups, suggesting good predictive accuracy of the model. Decision curve analysis showed that using this model significantly increased net clinical benefit for patients.

CONCLUSION

The nomogram model constructed for predicting the risk of recurrence in patients with lower extremity ASO after surgical intervention demonstrates good predictive and discriminative abilities, offering valuable guidance for clinical screening of high-risk populations.

摘要

目的

探讨并分析下肢动脉硬化闭塞症(ASO)患者手术干预后复发的危险因素,并构建和验证列线图预测模型。

方法

回顾性选取我院收治的270例ASO患者作为研究对象,按照7:3的比例分为训练队列(189例)和验证队列(81例)。训练队列中的患者根据术后两年内是否复发进一步分为复发组和未复发组。采用单因素和多因素logistic回归分析确定术后复发的独立危险因素,然后用于构建预测模型并生成列线图。

结果

纳入研究的270例ASO患者中,训练队列有189例患者,复发组76例(40.21%),未复发组113例(59.79%)。验证队列有81例患者,复发组32例(39.51%),未复发组49例(60.49%)。训练队列的单因素分析显示,年龄、体重指数(BMI)、糖尿病、高血压、病变部位分类、抗血小板药物使用、甘油三酯、纤维蛋白原(FIB)和D-二聚体(D-D)存在显著差异(P均<0.05)。多因素logistic回归分析表明,年龄≥60岁、BMI≥24 kg/m²、糖尿病、高血压、抗血小板治疗中断、FIB和D-D是下肢ASO患者手术干预后复发的独立危险因素(OR分别为2.471、1.625、4.568、2.678、5.974、2.073和3.067;P均<0.05)。当在建立的列线图模型中对训练队列和验证队列进行测试时,模型在训练队列中的曲线下面积(AUC)为0.832(95%CI:0.765-0.919),在验证队列中为0.858(95%CI:0.745-0.964)。校准曲线表明两组预测结果与实际结果高度一致,提示模型具有良好的预测准确性。决策曲线分析表明,使用该模型可显著提高患者的净临床获益。

结论

构建的用于预测下肢ASO患者手术干预后复发风险的列线图模型具有良好的预测和判别能力,为临床筛查高危人群提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7291/12001668/d402947f32e3/13019_2025_3413_Fig1_HTML.jpg

相似文献

4
[Construction and validation of a predictive model for early occurrence of lower extremity deep venous thrombosis in ICU patients with sepsis].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 May;36(5):471-477. doi: 10.3760/cma.j.cn121430-20231117-00985.
8
[Risk factor analysis on body mass rebound after laparoscopic sleeve gastrectomy and establishment of a nomogram prediction model].
Zhonghua Wei Chang Wai Ke Za Zhi. 2022 Oct 25;25(10):913-920. doi: 10.3760/cma.j.cn441530-20220418-00159.

本文引用的文献

2
Curcumol reduces lower limb arteriosclerosis in rats by inhibiting human arterial smooth muscle cell activity.
Clin Exp Pharmacol Physiol. 2024 Jun;51(6):e13867. doi: 10.1111/1440-1681.13867.
3
Predicting Outcomes Following Lower Extremity Endovascular Revascularization Using Machine Learning.
J Am Heart Assoc. 2024 May 7;13(9):e033194. doi: 10.1161/JAHA.123.033194. Epub 2024 Apr 19.
4
Lower Extremity Bypass for Occlusive Disease: A Brief History.
Ann Vasc Surg. 2024 Oct;107:17-30. doi: 10.1016/j.avsg.2023.11.053. Epub 2024 Apr 4.
5
Clinical Efficacy Of Infra Popliteal Angioplasty For Below The Knee Peripheral Vascular Occlusive Disease.
J Ayub Med Coll Abbottabad. 2023 Oct-Dec;35(4):553-557. doi: 10.55519/JAMC-04-12057.
9
FAM171B as a Novel Biomarker Mediates Tissue Immune Microenvironment in Pulmonary Arterial Hypertension.
Mediators Inflamm. 2022 Sep 22;2022:1878766. doi: 10.1155/2022/1878766. eCollection 2022.
10
Cutaneous manifestations of aortoiliac occlusive disease: two cases and review of the literature.
Folia Med (Plovdiv). 2022 Aug 31;64(4):682-687. doi: 10.3897/folmed.64.e64221.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验