Aljanaahi Abdulrahman, Hakeem Muhammad K, Aljanaahi Abdulla, Shah Iltaf
Dubai Police General Headquarters Dubai UAE.
Department of Chemistry College of Science United Arab Emirates University (UAEU) Al Ain UAE.
Anal Sci Adv. 2025 Apr 16;6(1):e70010. doi: 10.1002/ansa.70010. eCollection 2025 Jun.
Homemade explosives (HMEs), commonly used in improvised explosive devices (IEDs), present a significant forensic challenge due to their chemical variability, accessibility and adaptability. Traditional forensic methodologies often struggle with environmental contamination, complex sample matrices and the non-specificity of precursor residues. Recent advances in analytical techniques and chemometric methods have enhanced the detection, classification and interpretation of explosive residues. Infrared (IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) have seen improvements in spectral resolution and real-time detection capabilities, allowing for more accurate differentiation of explosive precursors. Thermal analysis techniques, such as thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), now provide refined kinetic modelling to assess the decomposition pathways of unstable energetic materials, improving forensic risk assessments. Additionally, x-ray diffraction (XRD) has contributed to forensic material sourcing by distinguishing between industrial-grade and improvised explosive formulations. Chemometric approaches, including principal component analysis (PCA), linear discriminant analysis (LDA) and partial least squares discriminant analysis (PLS-DA), have revolutionized forensic data analysis by improving classification accuracy and enabling automated identification of explosive components. Advanced machine learning models are being integrated with spectral datasets to enhance real-time decision-making in forensic laboratories and portable field devices. Despite these advancements, challenges remain in adapting laboratory-based techniques for field deployment, particularly in enhancing the sensitivity and robustness of portable analytical instruments. This review critically evaluates the latest developments in forensic analytical chemistry, highlighting strengths, limitations and emerging strategies to improve real-world HME detection and classification.
自制炸药(HMEs)常用于简易爆炸装置(IEDs)中,由于其化学性质的多变性、易获取性和适应性,给法医鉴定带来了重大挑战。传统的法医鉴定方法常常难以应对环境污染、复杂的样品基质以及前体残留物的非特异性。分析技术和化学计量学方法的最新进展增强了对爆炸残留物的检测、分类和解释能力。红外(IR)光谱法和气相色谱 - 质谱联用(GC - MS)在光谱分辨率和实时检测能力方面有了改进,能够更准确地区分爆炸前体。热分析技术,如热重分析(TGA)和差示扫描量热法(DSC),现在提供了精细的动力学模型来评估不稳定含能材料的分解途径,改善了法医风险评估。此外,X射线衍射(XRD)通过区分工业级和简易爆炸配方,为法医材料溯源做出了贡献。化学计量学方法,包括主成分分析(PCA)、线性判别分析(LDA)和偏最小二乘判别分析(PLS - DA),通过提高分类准确性和实现爆炸物成分的自动识别,彻底改变了法医数据分析。先进的机器学习模型正与光谱数据集相结合,以增强法医实验室和便携式现场设备中的实时决策能力。尽管取得了这些进展,但在将基于实验室的技术应用于现场部署方面仍存在挑战,特别是在提高便携式分析仪器的灵敏度和稳健性方面。本综述批判性地评估了法医分析化学的最新进展,强调了优势、局限性以及改进实际HME检测和分类的新兴策略。
Forensic Sci Rev. 1992-6
Sensors (Basel). 2023-12-29
Crit Rev Anal Chem. 2025
J Am Soc Mass Spectrom. 2023-7-5
Anal Chem. 2022-7-5
Materials (Basel). 2021-7-27