Dong Qin, Mattes Timothy E, LeFevre Gregory H
Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States.
IIHR-Hydroscience and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States.
ACS ES T Eng. 2025 Mar 6;5(4):883-898. doi: 10.1021/acsestengg.4c00718. eCollection 2025 Apr 11.
LB400 biofilms hold the potential to degrade PCBs in contaminated sediment. Nevertheless, unfavorable environmental conditions (e.g., salinity, temperature, and shear force) can interfere with biofilm stability and affect biodegradation potential. Sol-gel encapsulation has been used to protect planktonic cell function due to high material stability and absence of cell washout but has not been employed for biofilm protection. Our study is the first to develop sol-gel application on biofilm-enriched black carbons and evaluate efficacy for prolonging biodegradation potential. We systematically tuned multiple sol-gel recipes to coat biofilms and measured the impact of the sol-gel coating on cell survival and pollutant degradation. The developed sol-gel completely encapsulated biofilm-enriched black carbons and produced both high porosity and appropriate pore size that allowed pollutant transfer from the surrounding environment to the biofilms. The sol-gel maintained physical integrity under saline conditions (simulating marine and estuary sediments) and continuously applied shear force. Additionally, the encapsulated biofilms degraded benzoate, a proof-of-concept organic molecule, and extended biofilm attachment and cell viability for over three months without a carbon and energy source. Our study demonstrates that sol-gel helps sustain PCB-degrading biofilms under environmentally relevant conditions. This novel sol-gel application can potentially improve the bioaugmentation effectiveness and enhance degradation of environmental pollutants.
LB400生物膜具有降解受污染沉积物中多氯联苯的潜力。然而,不利的环境条件(如盐度、温度和剪切力)会干扰生物膜的稳定性并影响生物降解潜力。由于材料稳定性高且不存在细胞洗脱问题,溶胶-凝胶包封已被用于保护浮游细胞功能,但尚未用于生物膜保护。我们的研究首次在富含生物膜的黑炭上开发了溶胶-凝胶应用,并评估了其延长生物降解潜力的功效。我们系统地调整了多种溶胶-凝胶配方来包被生物膜,并测量了溶胶-凝胶包被对细胞存活和污染物降解的影响。所开发的溶胶-凝胶完全包封了富含生物膜的黑炭,并产生了高孔隙率和合适的孔径,使污染物能够从周围环境转移到生物膜上。在盐水条件下(模拟海洋和河口沉积物)以及持续施加剪切力的情况下,溶胶-凝胶保持了物理完整性。此外,被包封的生物膜降解了苯甲酸酯,这是一种概念验证性有机分子,并且在没有碳源和能源的情况下,生物膜附着和细胞活力延长了三个多月。我们的研究表明,溶胶-凝胶有助于在环境相关条件下维持降解多氯联苯的生物膜。这种新型的溶胶-凝胶应用可能会提高生物强化效果并增强对环境污染物的降解。