Zhong Xin, Duan Ran, Hou Shengwei, Chen Meng, Tan Xiaoming, Hess Wolfgang R, Shi Tuo
Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China.
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
mSystems. 2025 May 20;10(5):e0149924. doi: 10.1128/msystems.01499-24. Epub 2025 Apr 17.
While enhanced phytoplankton growth as a result of iron (Fe) fertilization has been extensively characterized, our understanding of the underlying mechanisms remains incomplete. Here, we show in a laboratory setup mimicking Fe fertilization in the field that transcriptome remodeling is a primary driver of acclimation to Fe availability in the marine diazotrophic cyanobacterium IMS101. Fe supplementation promoted cell growth, photosynthesis and N fixation, and concomitant expression of the photosynthesis and N fixation genes. The expression of genes encoding major Fe-binding metalloproteins is tightly linked to cellular carbon and nitrogen metabolism and appears to be controlled by the ferric uptake regulator FurA, which is involved in regulating Fe uptake and homeostasis. This feedback loop is reinforced by substitutive expression of functionally equivalent or competitive genes depending on Fe availability, as well as co-expression of multiple Fe stress inducible genes, an adaptive strategy evolved to elicit the Fe-responsive cascade. The study provides a genome-wide perspective on the acclimation of a prominent marine diazotroph to Fe availability, reveals an upgraded portfolio of indicator genes that can be used to better assess Fe status in the environment, and predicts scenarios of how marine diazotrophs may be affected in the future ocean.IMPORTANCEThe scarcity of trace metal iron (Fe) in global oceans has a great impact on phytoplankton growth. While enhanced primary productivity as a result of Fe fertilization has been extensively characterized, the underlying molecular mechanisms remain poorly understood. By subjecting the model marine diazotroph IMS101 to increasing concentrations of supplemented Fe, we demonstrate in it a comprehensively remodeled transcriptome that drives the mobilization of cellular Fe for coordinated carbon and nitrogen metabolism and reallocation of energy and resources. Our data provide broad genomic insight into marine diazotrophs acclimation to Fe availability, enabling the versatility and flexibility in choice of indicator genes for monitoring Fe status in the environment and having implications on how marine diazotrophs persist into the future ocean.
虽然铁(Fe)施肥导致浮游植物生长增强已得到广泛研究,但我们对其潜在机制的理解仍不完整。在此,我们在模拟野外铁施肥的实验室环境中表明,转录组重塑是海洋固氮蓝藻IMS101适应铁可用性的主要驱动因素。补充铁促进了细胞生长、光合作用和氮固定,以及光合作用和氮固定基因的同步表达。编码主要铁结合金属蛋白的基因表达与细胞碳氮代谢紧密相关,似乎受铁摄取调节因子FurA控制,FurA参与调节铁的摄取和体内平衡。根据铁的可用性,通过功能等效或竞争性基因的替代表达以及多个铁应激诱导基因的共表达,强化了这种反馈回路,这是一种进化而来的适应性策略,用于引发铁响应级联反应。该研究从全基因组角度揭示了一种重要海洋固氮菌对铁可用性的适应性,揭示了一组可用于更好评估环境中铁状态的升级指标基因,并预测了未来海洋中海洋固氮菌可能受到影响的情况。重要性全球海洋中微量金属铁(Fe)的稀缺对浮游植物生长有重大影响。虽然铁施肥导致初级生产力增强已得到广泛研究,但其潜在分子机制仍知之甚少。通过使模式海洋固氮菌IMS101暴露于不断增加浓度的补充铁中,我们在其中证明了一个全面重塑的转录组,该转录组驱动细胞铁的动员,以协调碳氮代谢以及能量和资源的重新分配。我们的数据为海洋固氮菌对铁可用性的适应性提供了广泛的基因组见解,使我们能够灵活选择指标基因来监测环境中的铁状态,并对海洋固氮菌在未来海洋中的生存产生影响。