Suppr超能文献

超痕量二氧化氮的室温增强检测:通过MXene修饰的InO微球提高灵敏度、选择性和稳定性。

Enhanced room-temperature detection of ultra-low level nitrogen dioxide: Improved sensitivity, selectivity and stability through MXene-modified InO microspheres.

作者信息

Lu Zijun, Tian Yu, Hong Bo, Xu Jingcai, Peng Xiaoling, Li Jing, Chen Hongwei, Qiu Shi, Zhang Nan, Wang Xinqing

机构信息

College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, 310018, China.

College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, 310018, China; Meteorological Project and Technology Center, Shandong Meteorological Bureau, Jinan, 250031, China.

出版信息

Talanta. 2025 Oct 1;293:128145. doi: 10.1016/j.talanta.2025.128145. Epub 2025 Apr 15.

Abstract

To address the increasing demand for wearable sensors, the development of gas sensors with high sensitivity and environmentally friendly power consumption for monitoring NO at room temperature (RT) is particularly promising. In this paper, porous InO microspheres are prepared via a hydrothermal method, followed by the incorporation of 2D MXene solution to synthesize InO@MXene composites. After characterizing the microstructures and morphology of the InO@MXene composites, the influence of MXene on the microstructures and NO gas-sensing performance at RT is discussed in detail. The results indicate that a moderate amount of MXene greatly affects the energy band structure, chemisorbed and vacancy oxygen content, and the availability of reactive sites for oxygen and NO, thereby affecting the gas-sensing performance of the InO@MXene sensors. Notably, the InO@10MXene sensor exhibits the highest response value of 24.98 to 4 ppm NO at RT, which is 5.90 times higher than that of InO sensor (4.23). Furthermore, the InO@10MXene sensor still presents a response value of 2.83-500 ppb NO under RT, confirming an ultra-low ppb level detection limit to NO gas at RT. Additionally, the InO@10MXene sensor demonstrates favorable gas selectivity and long-term stability. The incorporation of an appropriate amount of MXene effectively enhances the gas-sensing performance of the InO@MXene sensors, attributed to the formation of a Schottky heterojunction, increased surface oxygen, and more reactive sites for oxygen and NO from MXene.

摘要

为了满足对可穿戴传感器日益增长的需求,开发具有高灵敏度和环境友好功耗的室温(RT)下监测NO的气体传感器特别有前景。本文通过水热法制备了多孔InO微球,随后加入二维MXene溶液以合成InO@MXene复合材料。在对InO@MXene复合材料的微观结构和形貌进行表征后,详细讨论了MXene对室温下微观结构和NO气敏性能的影响。结果表明,适量的MXene极大地影响了能带结构、化学吸附和空位氧含量以及氧和NO的反应位点可用性,从而影响了InO@MXene传感器的气敏性能。值得注意的是,InO@10MXene传感器在室温下对4 ppm NO表现出最高响应值24.98,比InO传感器(4.23)高5.90倍。此外,InO@10MXene传感器在室温下对500 ppb NO仍呈现2.83的响应值,证实了对室温下NO气体的超低ppb水平检测限。此外,InO@10MXene传感器表现出良好的气体选择性和长期稳定性。适量掺入MXene有效地提高了InO@MXene传感器的气敏性能,这归因于肖特基异质结的形成、表面氧的增加以及MXene提供的更多氧和NO反应位点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验