Liu Yan, Wu Dan, Hua Hao, Mei Siqi, Yan Xiaohui, Xu Xinyu, Li Li, Wu Yang, Zhu Jian, Wu Minghua, Li Wenlei
Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, 210029, Nanjing, China.
Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, 214125, Wuxi, China.
J Ethnopharmacol. 2025 May 28;348:119808. doi: 10.1016/j.jep.2025.119808. Epub 2025 Apr 15.
In traditional Chinese Medicine (TCM) theory, there is a concept of "tonifying the kidney and generating marrow, and marrow enriches and nourishes the brain ", which believes that tonifying the kidney and generating marrow can promote brain marrow repair and neurological function recovery. This theoretical framework has been substantiated by multiple modern medical studies. Catalpol, a bioactive iridoid glycoside extracted from Rehmannia glutinosa (Gaertn.) DC. has been traditionally employed in TCM for "kidney tonification, marrow generation, and brain nourishment". Regenerative remodeling of corticospinal tracts (CST) mediated by axonal regeneration, collateral formation, and neural network reconstruction is critical for neurological recovery after ischemic stroke. As the primary active component of Rehmannia glutinosa, catalpol may manifest the traditional medicinal effects of promoting neurological recovery through modern neuroregenerative mechanisms.
To verify whether catalpol promotes neurological recovery after ischemic stroke and elucidate its underlying mechanisms.
Potential therapeutic targets of catalpol were first identified through network pharmacology coupled with cellular thermal shift assay (CETSA) validation. In vivo experiments utilized a photothrombotic (PT) stroke mouse model, in which catalpol's effects on neurological recovery were quantitatively assessed using behavioral tests. Axonal regeneration dynamics and IGF-1 pathway activation were systematically evaluated through functional magnetic resonance imaging (fMRI) for CST remodeling, growth-associated protein 43 (GAP43) and myelin basic protein (MBP) immunofluorescence for axonal sprouting quantification, and Western blotting for insulin-like growth factor-1 (IGF-1), insulin-like growth factor-1 receptor (IGF-1R), mammalian target of rapamycin (mTOR), and GAP43 expression profiling. Complementary in vitro studies employing oxygen-glucose deprived (OGD) neurons demonstrated catalpol's effects on proliferation, migration and axonal growth using Cell Counting Kit-8 (CCK-8), immunofluorescence, scratch wound assay and Western Blot. Mechanistic specificity was confirmed through pharmacological IGF-1R inhibition with linsitinib.
Catalpol was found to directly bind to IGF-1R, as evidenced by molecular docking (binding energy: -6.5 kcal/mol) and CETSA (ΔTm = 4.38 °C). In vivo, catalpol treatment significantly improved motor and sensory recovery in post-stroke mice, reducing error rates in irregular ladder walking (P = 0.014 vs. model) and shortening sticker removal times (P = 0.0043 vs. model), effects that were abolished by IGF-1R inhibition with linsitinib. Diffusion tensor imaging revealed enhanced fractional anisotropy (FA) values in corticospinal tract regions (e.g., dorsal fornix: P = 0.0496), alongside increased axonal markers GAP43 and MBP expression (P < 0.01) in peri-infarct tissues. In vitro, catalpol rescued oxygen-glucose deprivation (OGD)-induced neuronal damage, promoting SH-SY5Y cell viability (P < 0.01), neurite elongation (P < 0.0001), and scratch wound closure (P < 0.001). Mechanistically, catalpol upregulated IGF-1R phosphorylation, activated mTOR signaling, and suppressed phosphatase and tensin homolog deleted on chromosome ten (PTEN), thereby elevating GAP43, osteopontin (OPN), and p-S6 levels (P < 0.05-0.001). Co-treatment with linsitinib negated these effects, confirming the dependency on IGF-1R/mTOR/PTEN axis. These findings establish catalpol as a multimodal neuroregenerative agent targeting IGF-1 signaling to drive axonal repair and functional recovery post-stroke.
Our research elucidates that catalpol improves neurological recovery in ischemic stroke by regulating the IGF-1 signaling pathway to promote axonal regenerative repair, providing a new perspective for addressing the challenge of functional recovery in ischemic stroke.
在中医理论中,有“补肾生髓,髓充养脑”的概念,认为补肾生髓可促进脑髓修复和神经功能恢复。这一理论框架已得到多项现代医学研究的证实。梓醇是从地黄中提取的一种具有生物活性的环烯醚萜苷,传统上在中医中用于“补肾、生髓、养脑”。由轴突再生、侧支形成和神经网络重建介导的皮质脊髓束(CST)的再生重塑对于缺血性中风后的神经恢复至关重要。作为地黄的主要活性成分,梓醇可能通过现代神经再生机制发挥促进神经恢复的传统药用功效。
验证梓醇是否能促进缺血性中风后的神经恢复并阐明其潜在机制。
首先通过网络药理学结合细胞热位移分析(CETSA)验证来确定梓醇的潜在治疗靶点。体内实验采用光血栓形成(PT)中风小鼠模型,通过行为测试定量评估梓醇对神经恢复的影响。通过功能磁共振成像(fMRI)系统评估轴突再生动力学和IGF-1通路激活以进行CST重塑,通过生长相关蛋白43(GAP43)和髓鞘碱性蛋白(MBP)免疫荧光定量轴突发芽,以及通过蛋白质印迹法检测胰岛素样生长因子-1(IGF-1)、胰岛素样生长因子-1受体(IGF-1R)、雷帕霉素靶蛋白(mTOR)和GAP43的表达谱。采用氧-葡萄糖剥夺(OGD)神经元的体外补充研究,使用细胞计数试剂盒-8(CCK-8)、免疫荧光、划痕伤口试验和蛋白质印迹法证明梓醇对增殖、迁移和轴突生长的影响。通过用林西替尼进行药理学IGF-1R抑制来确认机制特异性。
分子对接(结合能:-6.5 kcal/mol)和CETSA(ΔTm = 4.38 °C)证明梓醇可直接与IGF-1R结合。在体内,梓醇治疗显著改善了中风后小鼠的运动和感觉恢复,降低了不规则阶梯行走的错误率(与模型组相比,P = 0.014)并缩短了去除贴纸的时间(与模型组相比,P = 0.0043),而用林西替尼抑制IGF-1R可消除这些作用。扩散张量成像显示皮质脊髓束区域的分数各向异性(FA)值增加(例如,背侧穹窿:P = 0.0496),同时梗死周围组织中轴突标记物GAP43和MBP的表达增加(P < 0.01)。在体外,梓醇挽救了氧-葡萄糖剥夺(OGD)诱导的神经元损伤,促进了SH-SY5Y细胞活力(P < 0.01)、神经突伸长(P < 0.0001)和划痕伤口闭合(P < 0.001)。机制上,梓醇上调IGF-1R磷酸化,激活mTOR信号,并抑制10号染色体上缺失的磷酸酶和张力蛋白同源物(PTEN),从而提高GAP43、骨桥蛋白(OPN)和p-S6水平(P < 0.05 - 0.001)。与林西替尼联合处理可消除这些作用,证实了对IGF-1R/mTOR/PTEN轴的依赖性。这些发现确立了梓醇作为一种多模式神经再生剂,靶向IGF-1信号以驱动中风后轴突修复和功能恢复。
我们的研究阐明了梓醇通过调节IGF-1信号通路促进轴突再生修复来改善缺血性中风后的神经恢复,为应对缺血性中风功能恢复的挑战提供了新的视角。