Zhang Wenjie, Yang Tiejun, Fan Jiacheng, Wang Heng, Ji Mingzhu, Zhang Huiyao, Miao Jianyu
School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China.
School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China.
Med Phys. 2025 Jun;52(6):4567-4584. doi: 10.1002/mp.17812. Epub 2025 Apr 17.
Cardiac magnetic resonance imaging (CMR) provides critical pathological information, such as scars and edema, which are vital for diagnosing myocardial infarction (MI). However, due to the limited pathological information in single-sequence CMR images and the small size of pathological regions, automatic segmentation of myocardial pathology remains a significant challenge.
In the paper, we propose a novel two-stage anatomical-pathological segmentation framework combining Kolmogorov-Arnold Networks (KAN) and Mamba, aiming to effectively segment myocardial pathology in multi-sequence CMR images.
First, in the coarse segmentation stage, we employed a multiline parallel MambaUnet as the anatomical structure segmentation network to obtain shape prior information. This approach effectively addresses the class imbalance issue and aids in subsequent pathological segmentation. In the fine segmentation stage, we introduced a novel U-shaped segmentation network, KANMambaNet, which features a Dual-Stream Fusion Mamba module. This module enhances the network's ability to capture long-range dependencies while improving its capability to distinguish different pathological features in small regions. Additionally, we developed a Kolmogorov-Arnold Network-based multilayer perceptron (KAN MLP) module that utilizes learnable activation functions instead of fixed nonlinear functions. This design enhances the network's flexibility in handling various pathological features, enabling more accurate differentiation of the pathological characteristics at the boundary between edema and scar regions. Our method achieves competitive segmentation performance compared to state-of-the-art models, particularly in terms of the Dice coefficient.
We validated our model's performance on the MyoPS2020 dataset, achieving a Dice score of 0.8041 0.0751 for myocardial edema and 0.9051 0.0240 for myocardial scar. Compared to the baseline model MambaUnet, our edema segmentation performance improved by 0.1420, and scar segmentation performance improved by 0.1081.
We developed an innovative two-stage anatomical-pathological segmentation framework that integrates KAN and Mamba, effectively segmenting myocardial pathology in multi-sequence CMR images. The experimental results demonstrate that our proposed method achieves superior segmentation performance compared to other state-of-the-art methods.
心脏磁共振成像(CMR)可提供关键的病理信息,如瘢痕和水肿,这对诊断心肌梗死(MI)至关重要。然而,由于单序列CMR图像中的病理信息有限且病理区域较小,心肌病理的自动分割仍然是一项重大挑战。
在本文中,我们提出了一种结合柯尔莫哥洛夫 - 阿诺德网络(KAN)和曼巴的新型两阶段解剖 - 病理分割框架,旨在有效分割多序列CMR图像中的心肌病理。
首先,在粗分割阶段,我们采用多线并行曼巴Unet作为解剖结构分割网络以获取形状先验信息。这种方法有效解决了类别不平衡问题,并有助于后续的病理分割。在精细分割阶段,我们引入了一种新型的U形分割网络KANMambaNet,其具有双流融合曼巴模块。该模块增强了网络捕捉长程依赖的能力,同时提高了其在小区域区分不同病理特征的能力。此外,我们开发了一种基于柯尔莫哥洛夫 - 阿诺德网络的多层感知器(KAN MLP)模块,该模块使用可学习的激活函数而非固定的非线性函数。这种设计增强了网络处理各种病理特征的灵活性,能够更准确地区分水肿和瘢痕区域边界处的病理特征。与现有最先进模型相比,我们的方法实现了具有竞争力的分割性能,特别是在Dice系数方面。
我们在MyoPS2020数据集上验证了模型的性能,心肌水肿的Dice评分为0.8041±0.0751,心肌瘢痕的Dice评分为0.9051±0.0240。与基线模型曼巴Unet相比,我们的水肿分割性能提高了0.1420,瘢痕分割性能提高了0.1081。
我们开发了一种创新的两阶段解剖 - 病理分割框架,该框架集成了KAN和曼巴,可有效分割多序列CMR图像中的心肌病理。实验结果表明,我们提出的方法与其他现有最先进方法相比具有卓越的分割性能。