Chen Junyu, Fu Xiaoxue, Ahmed Aisha S, Hart David A, Zhou Zongke, Ackermann Paul W
Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, Chengdu, PR China.
Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
Adv Wound Care (New Rochelle). 2025 Apr 18. doi: 10.1089/wound.2024.0233.
The healing process following connective tissue (CT) injuries is complex, resulting in variable and often suboptimal outcomes. Patients undergoing CT repair frequently experience healing failures, compromised function, and chronic degenerative diseases. The identification of biomarkers to guide improved clinical outcomes after CT injuries remains an emerging but promising field. [Figure: see text] [Figure: see text] Systematic review. Databases, including PubMed, MEDLINE Ovid, Web of Science, and Google Scholar, were searched up to August 2024. To achieve the research objective, randomized control trials, cohort studies, and case-control studies on biomarkers associated with CT repair and healing outcomes were selected. The present analysis was confined to clinical and preclinical models, excluding imaging studies. The entire process of this systematic review adhered strictly to the guidelines outlined in the Preferred Reporting Items for Systematic Review and Meta-Analyses protocol checklist. A total of 1,815 studies on biomarkers of CT repair were initially identified, with 75 studies meeting eligibility criteria and 55 passing quality assessments. For biomarkers associated with CT healing outcomes, 281 studies were considered, with 30 studies meeting eligibility criteria and 24 passing quality assessments. Twenty-one overlapping studies investigated the effects of biomarkers on both CT repair and healing outcomes. Specific biomarkers identified, and ranked from highest to lowest quality, include complement factor D, eukaryotic elongation factor-2, procollagen type I N-terminal propetide, procollagen type III N-terminal propetide, lactate, pyruvate, platelet-derived growth factor-BB, tissue inhibitor of metalloproteinase-3 (TIMP-3), cysteine-rich protein-1, plastin-3, periostin, protein S100-A11, vimentin, matrix metalloproteinases (MMP-2, MMP-7, and MMP-9), hepatocyte growth factor, interferon-γ, interleukins (IL-6, IL-8, and IL-10), MMP-1, MMP-3, tumor necrosis factor-α, fibroblast growth factor-2, IL-1α, chondroitin-6-sulfate, inter-alpha-trypsin inhibitor heavy chain-4, transforming growth factor-beta 1, vascular endothelial growth factor, C-C chemokine receptor 7, C-C chemokine ligand 19, IL-1β, IL-1Ra, IL-12p40, granulocyte-macrophage colony-stimulating factor (GM-CSF), and TIMP-1. All of the 37 identified potential biomarkers demonstrated regulatory effects on CT repair and mediated healing outcomes. Notably, the identified biomarkers from human studies can potentially play an essential role in the development of targeted treatment protocols to counteract compromised healing and can also serve as predictors for detecting CT healing processes and long-term outcomes.
结缔组织(CT)损伤后的愈合过程很复杂,会导致不同且往往不理想的结果。接受CT修复的患者经常经历愈合失败、功能受损和慢性退行性疾病。识别生物标志物以指导CT损伤后改善临床结果仍是一个新兴但很有前景的领域。[图:见正文][图:见正文]系统评价。检索了包括PubMed、MEDLINE Ovid、Web of Science和谷歌学术在内的数据库,检索截至2024年8月。为实现研究目标,选择了关于与CT修复和愈合结果相关生物标志物的随机对照试验、队列研究和病例对照研究。本分析仅限于临床和临床前模型,不包括影像学研究。本系统评价的整个过程严格遵循系统评价和Meta分析报告规范(PRISMA)清单中概述的指南。最初共识别出1815项关于CT修复生物标志物的研究,其中75项符合纳入标准,55项通过质量评估。对于与CT愈合结果相关的生物标志物,共考虑了281项研究,其中30项符合纳入标准,24项通过质量评估。21项重叠研究调查了生物标志物对CT修复和愈合结果的影响。识别出的特定生物标志物,按质量从高到低排序,包括补体因子D、真核生物延伸因子-2、I型前胶原N端前肽、III型前胶原N端前肽、乳酸、丙酮酸、血小板衍生生长因子-BB、金属蛋白酶组织抑制剂-3(TIMP-3)、富含半胱氨酸蛋白-1、丝束蛋白-3、骨膜蛋白、蛋白S100-A11、波形蛋白、基质金属蛋白酶(MMP-2、MMP-7和MMP-9)、肝细胞生长因子、干扰素-γ、白细胞介素(IL-6、IL-8和IL-10)、MMP-1、MMP-3、肿瘤坏死因子-α、成纤维细胞生长因子-2、IL-1α、硫酸软骨素-6硫酸酯、α-胰蛋白酶抑制剂重链-4、转化生长因子-β1、血管内皮生长因子、C-C趋化因子受体7、C-C趋化因子配体19、IL-1β、IL-1受体拮抗剂(IL-1Ra)、IL-12p40、粒细胞-巨噬细胞集落刺激因子(GM-CSF)和TIMP-1。所有37种识别出的潜在生物标志物均对CT修复具有调节作用并介导愈合结果。值得注意的是,从人体研究中识别出的生物标志物可能在制定针对性治疗方案以对抗愈合受损方面发挥重要作用,还可作为检测CT愈合过程和长期结果的预测指标。