Suppr超能文献

人工智能在心血管疾病风险预测中的作用:关于当前认识与未来研究的最新综述

The Role of Artificial Intelligence in Cardiovascular Disease Risk Prediction: An Updated Review on Current Understanding and Future Research.

作者信息

Tiwari Angad, Shah Purva C, Kumar Harendra, Borse Tanvi, Arun Anjali Raj, Chekragari Manognya, Ochani Sidhant, Shah Yash R, Ganesh Adithan, Ahmed Rezwan, Sharma Ashish, Mylavarapu Maneeth

机构信息

Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi, Uttar Pradesh, India.

Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA.

出版信息

Curr Cardiol Rev. 2025 Apr 17. doi: 10.2174/011573403X351048250329170744.

Abstract

Cardiovascular disease (CVD) Continues to be the leading cause of mortality worldwide, underscoring the critical need for effective prevention and management strategies. The ability to predict cardiovascular risk accurately and cost-effectively is central to improving patient outcomes and reducing the global burden of CVD. While useful, traditional tools used for risk assessment are often limited in their scope and fail to adequately account for atypical presentations and complex patient profiles. These limitations highlight the necessity for more advanced approaches, particularly integrating artificial intelligence (AI) into cardiovascular risk prediction. Our review explores the transformative role of AI in enhancing the accuracy, efficiency, and accessibility of cardiovascular risk prediction models. The implementation of AI-driven risk assessment tools has shown promising results, not only in improving CVD mortality rates but also in enhancing quality of life (QOL) markers and reducing healthcare costs. Machine learning (ML) algorithms predicted 2-year survival rates after MI with improved accuracy compared to traditional models. Deep Learning (DL) forecasted hypertension risk with a 91.7% accuracy based on electronic health records. Furthermore, AI-driven ECG (Electrocardiography) analysis has demonstrated high precision in identifying left ventricular systolic dysfunction, even with noisy single-lead data from wearable devices. These tools enable more personalized treatment strategies, foster greater patient engagement, and support informed decision-making by healthcare providers. Unfortunately, the widespread adoption of AI in CVD risk assessment remains a challenge, largely due to a lack of education and acceptance among healthcare professionals. To overcome these barriers, it is crucial to promote broader education on the benefits and applications of AI in cardiovascular risk prediction. By fostering a greater understanding and acceptance of these technologies, we can accelerate their integration into clinical practice, ultimately aiming to mitigate the global impact of CVD.

摘要

心血管疾病(CVD)仍然是全球死亡的主要原因,这突出表明迫切需要有效的预防和管理策略。准确且经济高效地预测心血管风险的能力是改善患者预后和减轻全球心血管疾病负担的核心。虽然用于风险评估的传统工具很有用,但它们的范围往往有限,无法充分考虑非典型表现和复杂的患者情况。这些局限性凸显了采用更先进方法的必要性,特别是将人工智能(AI)集成到心血管风险预测中。我们的综述探讨了人工智能在提高心血管风险预测模型的准确性、效率和可及性方面的变革性作用。实施人工智能驱动的风险评估工具已显示出令人鼓舞的结果,不仅在降低心血管疾病死亡率方面,而且在提高生活质量(QOL)指标和降低医疗成本方面。与传统模型相比,机器学习(ML)算法预测心肌梗死后2年生存率的准确性有所提高。深度学习(DL)基于电子健康记录预测高血压风险的准确率为91.7%。此外,人工智能驱动的心电图(ECG)分析在识别左心室收缩功能障碍方面已显示出高精度,即使是来自可穿戴设备的嘈杂单导联数据。这些工具能够实现更个性化的治疗策略,促进患者更大程度的参与,并支持医疗保健提供者做出明智的决策。不幸的是,人工智能在心血管疾病风险评估中的广泛应用仍然是一个挑战,这主要是由于医疗保健专业人员缺乏教育和接受度。为了克服这些障碍,至关重要的是推广关于人工智能在心血管风险预测中的益处和应用的更广泛教育。通过促进对这些技术的更深入理解和接受,我们可以加速它们融入临床实践,最终目标是减轻心血管疾病的全球影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验