术前胸腰椎CT扫描中Hounsfield单位的人工智能图像分析:对脊柱手术患者进行骨质疏松症的自动筛查。

Artificial intelligence image analysis for Hounsfield units in preoperative thoracolumbar CT scans: an automated screening for osteoporosis in patients undergoing spine surgery.

作者信息

Feng Emily, Jayasuriya Nishantha M, Nathani Karim Rizwan, Katsos Konstantinos, Machlab Laura A, Johnson Graham W, Freedman Brett A, Bydon Mohamad

机构信息

1Departments of Neurologic Surgery.

3Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota.

出版信息

J Neurosurg Spine. 2025 Apr 18;43(1):1-8. doi: 10.3171/2025.1.SPINE24900. Print 2025 Jul 1.

Abstract

OBJECTIVE

This study aimed to develop an artificial intelligence (AI) model for automatically detecting Hounsfield unit (HU) values at the L1 vertebra in preoperative thoracolumbar CT scans. This model serves as a screening tool for osteoporosis in patients undergoing spine surgery, offering an alternative to traditional bone mineral density measurement methods like dual-energy x-ray absorptiometry.

METHODS

The authors utilized two CT scan datasets, comprising 501 images, which were split into training, validation, and test subsets. The nnU-Net framework was used for segmentation, followed by an algorithm to calculate HU values from the L1 vertebra. The model's performance was validated against manual HU calculations by expert raters on 56 CT scans. Statistical measures included the Dice coefficient, Pearson correlation coefficient, intraclass correlation coefficient (ICC), and Bland-Altman plots to assess the agreement between AI and human-derived HU measurements.

RESULTS

The AI model achieved a high Dice coefficient of 0.91 for vertebral segmentation. The Pearson correlation coefficient between AI-derived HU and human-derived HU values was 0.96, indicating strong agreement. ICC values for interrater reliability were 0.95 and 0.94 for raters 1 and 2, respectively. The mean difference between AI and human HU values was 7.0 HU, with limits of agreement ranging from -21.1 to 35.2 HU. A paired t-test showed no significant difference between AI and human measurements (p = 0.21).

CONCLUSIONS

The AI model demonstrated strong agreement with human experts in measuring HU values, validating its potential as a reliable tool for automated osteoporosis screening in spine surgery patients. This approach can enhance preoperative risk assessment and perioperative bone health optimization. Future research should focus on external validation and inclusion of diverse patient demographics to ensure broader applicability.

摘要

目的

本研究旨在开发一种人工智能(AI)模型,用于在术前胸腰椎CT扫描中自动检测第一腰椎的亨氏单位(HU)值。该模型可作为脊柱手术患者骨质疏松症的筛查工具,为双能X线吸收法等传统骨密度测量方法提供了一种替代方案。

方法

作者使用了两个CT扫描数据集,共501张图像,将其分为训练集、验证集和测试子集。采用nnU-Net框架进行分割,随后使用一种算法从第一腰椎计算HU值。通过专家评分员对56例CT扫描进行手动HU计算,以验证模型的性能。统计指标包括Dice系数、Pearson相关系数、组内相关系数(ICC)和Bland-Altman图,以评估AI与人工得出的HU测量值之间的一致性。

结果

AI模型在椎体分割方面取得了0.91的高Dice系数。AI得出的HU值与人工得出的HU值之间的Pearson相关系数为0.96,表明一致性很强。评分员1和评分员2的组内可靠性ICC值分别为0.95和0.94。AI与人工HU值之间的平均差异为7.0 HU,一致性界限范围为-21.1至35.2 HU。配对t检验显示AI与人工测量值之间无显著差异(p = 0.21)。

结论

AI模型在测量HU值方面与人类专家表现出很强的一致性,验证了其作为脊柱手术患者自动骨质疏松症筛查可靠工具的潜力。这种方法可以加强术前风险评估和围手术期骨骼健康优化。未来的研究应侧重于外部验证以及纳入不同的患者人群,以确保更广泛的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索