Suppr超能文献

通过大规模筛选来学习T细胞受体的语言。

Learning the language of T cell receptors through large-scale screening.

作者信息

Moravec Živa, Haanen John B A G, Schumacher Ton N, Scheper Wouter

机构信息

Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.

Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

Cancer Cell. 2025 Jun 9;43(6):993-997. doi: 10.1016/j.ccell.2025.03.032. Epub 2025 Apr 17.

Abstract

T cells perform critical roles in orchestrating immunity in health and disease. However, decoding what individual T cells recognize has long been challenging due to the immense diversity of both T cell receptors (TCRs) and potential antigens. Recent advances in high-throughput TCR screening approaches now provide an opportunity to map the antigen specificity landscape of T cells with unprecedented depth. Here, we outline these recent developments in screening methodologies and discuss how these can help advance our fundamental understanding of T cell-based immunity.

摘要

T细胞在协调健康和疾病状态下的免疫反应中发挥着关键作用。然而,由于T细胞受体(TCR)和潜在抗原的巨大多样性,解读单个T细胞识别的抗原长期以来一直具有挑战性。高通量TCR筛选方法的最新进展现在为以前所未有的深度绘制T细胞的抗原特异性图谱提供了机会。在这里,我们概述了筛选方法的这些最新进展,并讨论了它们如何有助于推进我们对基于T细胞的免疫的基本理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验