Feng Xiaohui, Jia Haoran, Li Rongtan, Lin Le, Li Mingrun, Chen Mingshu, Liu Chengxiang, Du Xiangze, Wang Xiaoyue, Ding Yunjie, Mu Rentao, Fu Qiang, Bao Xinhe
Department of Chemical Physics, University of Science and Technology of China, Hefei, 230022, China.
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
Nat Commun. 2025 Apr 19;16(1):3711. doi: 10.1038/s41467-025-58951-8.
ZnCrO oxides coupled with zeolites (OXZEO) allow direct conversion of syngas into light olefins, while active sites in the composite oxides remain elusive. Herein, we find that ZnO particles physically mixed with ZnCrO spinel particles can be well dispersed onto the spinel surfaces by treatment in syngas and through a reduction-evaporation-anchoring mechanism, forming monodispersed ZnO species with uniform thickness or dimension on ZnCrO up to a dispersion threshold ZnO loading of 16.0 wt% (ZnCrO@ZnO). A linear correlation between CO conversion and surface ZnO loading clearly confirms that the ZnO overlayer on ZnCrO acts as the active structure for the syngas conversion, which can efficiently activate both H and CO. The obtained ZnCrO@ZnO catalyst combined with SAPO-34 zeolite achieves excellent catalytic performance with 64% CO conversion and 75% light olefins selectivity among all hydrocarbons. Moreover, the ZnO overlayer is effectively anchored on the ZnCrO spinel, which inhibits Zn loss during the reaction and demonstrates high stability over 100 hours. Thus, a significant interface confinement effect is present between the spinel surface and the ZnO overlayer, which helps to stabilize ZnO active structure and enhance the catalytic performance.
锌铬氧化物与沸石耦合(OXZEO)可将合成气直接转化为轻质烯烃,而复合氧化物中的活性位点仍不明确。在此,我们发现,通过在合成气中处理并经由还原-蒸发-锚定机制,与锌铬尖晶石颗粒物理混合的氧化锌颗粒能够很好地分散在尖晶石表面,在锌铬上形成厚度或尺寸均匀的单分散氧化锌物种,直至达到16.0 wt%的分散阈值氧化锌负载量(ZnCrO@ZnO)。一氧化碳转化率与表面氧化锌负载量之间的线性关系清楚地证实,锌铬上的氧化锌覆盖层是合成气转化的活性结构,它能有效活化氢气和一氧化碳。所得的ZnCrO@ZnO催化剂与SAPO-34沸石结合,在所有烃类中实现了优异的催化性能,一氧化碳转化率为64%,轻质烯烃选择性为75%。此外,氧化锌覆盖层有效地锚定在锌铬尖晶石上,抑制了反应过程中的锌损失,并在100小时以上表现出高稳定性。因此,在尖晶石表面和氧化锌覆盖层之间存在显著的界面限域效应,这有助于稳定氧化锌活性结构并提高催化性能。